Boolean algebra George Boole ( ) นักคณิตศาสตร์ชาวอังกฤษผู้คิดค้น

Slides:



Advertisements
งานนำเสนอที่คล้ายกัน
ความคิดเห็นของประชาชนที่มีต่อ พ.ร.บ.ข้อมูลข่าวสารของราชการ พ.ศ. 2548
Advertisements

คณิตคิดเร็วโดยใช้นิ้วมือ
ที่ โรงเรียน เฉลี่ย 1 บ้านหนองหว้า บ้านสะเดาหวาน
แบบรูปและความสัมพันธ์
พีชคณิตบูลีน Boolean Algebra.
จำนวน สถานะ NUMBER OF STATES. ประเด็นที่ สนใจ The number of distinct states the finite state machine needs in order to recognize a language is related.
ยินดีต้อน เข้าสู่ โครงงาน.
พลังงานในกระบวนการทางความร้อน : กฎข้อที่หนึ่งของอุณหพลศาสตร์
การซ้อนทับกัน และคลื่นนิ่ง
Number Theory (part 1) ง30301 คณิตศาสตร์ดิสครีต.
นายรังสฤษดิ์ตั้งคณารหัส นายวสันต์ชานุชิตรหัส
เปรียบเทียบจำนวนประชากรทั้งหมดจากฐาน DBPop Original กับจำนวนประชากรทั้งหมดที่จังหวัดถือเป็นเป้าหมาย จำนวน (คน) 98.08% % จังหวัด.
ม. ค.57 เปรียบเทียบ ม. ค.56 ปี 56 เกิด 3 จับ 3 ราย (100.00%) ปี 57 เกิด 3 จับ 2 ราย ( % ) คดีเท่ากัน ผลการจับกุมบรรลุเป้า ( เป้า %)
ผู้จัดทำ 1.นายกิตติพงศ์ ทีภูเวียง เลขที่ 1
การเลื่อนเงินเดือนข้าราชการ
สำเร็จการศึกษาในเวลา 4 ปี
Chapter 12 Riveted, Bolted & Welded Connections
จำนวนนับใดๆ ที่หารจำนวนนับที่กำหนดให้ได้ลงตัว เรียกว่า ตัวประกอบของจำนวนนับ จำนวนนับ สามารถเรียกอีกอย่างว่า จำนวนเต็มบวก หรือจำนวนธรรมชาติ ซึ่งเราสามารถนำจำนวนนับเหล่านี้มา.
Boolean Algebra วัตถุประสงค์ของบทเรียน
เอ้า....มองย้อนดูกัน ไร้สาระลามกจกเปรต  ทั้งอุบาทว์น่าสมเพชทั้งหลาย สั่งรุ่นน้องเหมือนเป็นวัวเป็นควาย เป็นรุ่นพี่สมองคิดได้เท่านั้นหรือ  รุ่นน้องๆปีหนึ่งต้องปรับตัว.
การขอเบิกเงินนอกงบประมาณ
เป้าเบิกจ่าย งบรวม เป้าเบิกจ่าย งบลงทุน งบรวม เบิกจ่าย.
Boolean Algebra พีชคณิตบูลลีน บทที่ 4.
จำนวนทั้งหมด ( Whole Numbers )
การบ้าน แซมเปิลสเปซ.
Kampol chanchoengpan it สถาปัตยกรรมคอมพิวเตอร์ Arithmetic and Logic Unit 1.
การดำเนินงานอาชีวเวชศาสตร์: แพทย์ที่ผ่านการอบรม
การประเมินผลผลลัพธ์การดำเนินงาน ที่สำคัญ ( พ. ศ. ๒๕๕๓ ) ๑. ความพึงพอใจของประชาชนต่อคุณภาพ การให้บริการของหน่วยงานระดับ Front Office ( ๓. ๑. ๑. ๑ ) ๒. ความพึงพอใจของประชาชนต่อการ.
Office of information technology
สรุปผลการสำรวจ ความคิดเห็นของประชาชนเกี่ยวกับ กองทุนหมู่บ้านและชุมชนเมือง พ.ศ สำนักงานสถิติแห่งชาติกระทรวงเทคโนโลยีสารสนเทศและการสื่อสาร สิงหาคม.
ข้อมูลเศรษฐกิจการค้า
งานอนามัยแม่และเด็ก ปี 2551
การเลื่อนเงินเดือนในระบบใหม่
สำนักวิชาการและแผนงาน
ความก้าวหน้าระดับความสำเร็จ การปฏิบัติราชการของปฏิรูปที่ดิน จังหวัด 5 ครั้ง ณ 30 มิถุนายน 2555 สำนักวิชาการและ แผนงาน.
ความก้าวหน้าระดับความสำเร็จ การปฏิบัติราชการของปฏิรูปที่ดิน จังหวัด 5 ครั้ง ณ 31 พฤษภาคม 2555.
ความก้าวหน้าระดับความสำเร็จ การปฏิบัติราชการของปฏิรูปที่ดิน จังหวัด 5 ครั้ง ณ 15 มิถุนายน 2555.
การดำเนินงานตามแผนปฏิบัติการ โครงการที่ได้รับ
ภาพรวมเศรษฐกิจไทยล่าสุด (ณ เดือนตุลาคม) และแนวโน้มไตรมาส 3/50 และ 4/50
การเข้า E-Conference จากทุกหน่วยงานประชุมศูนย์ ปฏิบัติการการเงินการคลัง กลุ่มประกันสุขภาพ 2554.
สถาปัตยกรรมคอมพิวเตอร์ (Computer Architecture)
คณะสถาปัตยกรรมศาสตร์ วันที่ มิถุนายน คะแนน ระดับดีมาก.
วิชาคณิตศาสตร์ ชั้นประถมศึกษาปีที่6
ความคิดเห็นของประชาชนเกี่ยวกับเกมออนไลน์ ในเขตกรุงเทพมหานคร
โรคทางระบาดวิทยาที่มีอัตราป่วยสูง 10 ลำดับแรกของจังหวัดเลย สะสมตั้งแต่วันที่ 1 มกราคม – 29 เมษายน 2555.
ผลการทดสอบทางการศึกษา ระดับชาติขั้นพื้นฐาน ( O-NET) ระดับชั้นมัธยมศึกษาปีที่ 6 ผู้จัดทำ นางสาวภัทศิรา ภูมิเมือง เลขที่ 16 นางสาวสุพัชรญา มะโนรา เลขที่
สรุปสถิติ ค่ากลาง ค่าเฉลี่ยเลขคณิต เรียงข้อมูล ตำแหน่งกลาง มัธยฐาน
In-Class Exercises Discrete Mathematics
เรื่องการประยุกต์ของสมการเชิงเส้นตัวแปรเดียว
หน่วยการเรียนรู้ที่ 7 ความรู้เบื้องต้นเกี่ยวกับจำนวนจริง
สรุปผลสัมฤทธิ์ปีการศึกษา 2552 ชั้ น จำนว นสาระการเรียนรู้ นักเรี ยนทค ค. เพิ่มวสพ.พ. ศ.ศ. ดน ตรีง.ง. คอ ม. อ อ. เพิ่ม ป.1ป
ขั้นตอนการจัดนักศึกษาเข้าสังกัดสาขาวิชา
เรื่องการประยุกต์ของสมการเชิงเส้นตัวแปรเดียว
สรุปผลการสำรวจ ความคิดเห็นของประชาชนเกี่ยวกับ การป้องกันและปราบปรามยาเสพติด (ก่อนและหลัง การประกาศสงครามขั้นแตกหักเพื่อเอาชนะยาเสพติด) พ.ศ สำนักงานสถิติแห่งชาติ
ผลการทดสอบทางการศึกษาระดับชาติขั้นพื้นฐาน
สรุปผลการสำรวจ ความคิดเห็นของประชาชน
การค้นในปริภูมิสถานะ
หน่วยการเรียนรู้ที่ 7 ความรู้เบื้องต้นเกี่ยวกับจำนวนจริง
สถานการณ์ โรคเฝ้าระวังทางระบาดวิทยา มิถุนายน 2554 งานระบาดวิทยา งานระบาดวิทยา สำนักงานสาธารณสุขอำเภอเมืองลำปาง.
กราฟเบื้องต้น.
รายละเอียด ระดับความพึงพอใจ มาก ที่สุด (5) มาก (4) ปาน กลาง (3) น้อย (2) น้อย ที่สุด (1) ค่าเฉลี่ ย 1. ผู้เรียนชอบทำงานร่วมกับเพื่อ เมื่อเรียนวิชาระบบเครือข่าย.
โครงสร้างข้อมูลแบบ สแตก (stack)
กราฟเบื้องต้น.
Week 13 Basic Algorithm 2 (Searching)
ผลการประเมิน คุณภาพการศึกษาขั้นพื้นฐาน ปีการศึกษา
แผนภูมิแสดงแผนและผลการใช้จ่ายงบประมาณปี 2549 การใช้ จ่าย ( สะสม ) ต.ค.ต.ค. พ.ย.พ.ย. ธ.ค.ธ.ค. ม.ค.ม.ค. ก.พ.ก.พ. มี. ค. เม. ย. พ.ค.พ.ค. มิ. ย. ก.ค. ก.ค.
Chapter 1 Mathematics and Computer Science
ครั้งที่ 3 การวิเคราะห์ และ ออกแบบวงจรเกต
Two-Variable K-Map K-Map = Karnaugh map ตัวอย่างฟังก์ชัน input input.
ใบสำเนางานนำเสนอ:

Boolean algebra George Boole (1815-1864) นักคณิตศาสตร์ชาวอังกฤษผู้คิดค้น Boolean Algebra ซึ่งเป็นวิชาพีชคณิตใช้เฉพาะกับ Logic เมื่อปี ค.ศ. 1854 จากนั้น Boolean Algebra ก็ได้รับ การวิวัฒนาการเรื่อยๆ มาจนกระทั่งปี ค.ศ. 1938 จึงถูกนำมาใช้ในวิชา Theory of switching circuits โดย C. E. Shannon ถึงแม้ว่าผลงานของ Shannon จะหนักไปในด้านการออกแบบสวิทซ์ แม่เหล็กไฟฟ้า (Electromechanical Relay Network) แต่ก็สามารถที่จะปรับปรุงมา ใช้งานได้ดีสำหรับวงจร Solid-state electronic ทุกวันนี้

Boolean Algebra Boolean Algbera is a mathematical Model for digital logic circuits. Boolean Algebra is a system <B, V, P> B={0,1} is the set of values1 V is the set of variables P={+, •, ΄} is the set of operators (basic functions) defined by the truth tables as follows

Boolean values Boolean Algebra แตกต่างไปจากวิชาพีชคณิตที่เรารู้จักกัน ค่า ตัวแปรต่างๆ จะมีได้เพียง 2 ค่าเท่านั้น คือ false or true 0 or 1 low or high กฎเกณฑ์บางอันก็คล้ายคลึงกันบางอันก็ต่างกันมาก กฎต่างๆ ของ Boolean algebra ที่สำคัญมีดังนี้

Boolean operations not or and xor (exclusive or) nand (not and) nor (not or)

Not Note: Some people write x’ instead of x. The “bubble” (or “bobble”) means “not”.

And Notes: Some people write a^b or a&b. The gate is shaped like a “D” as in “anD”.

Or Note: Some people write ab or a|b.

Exclusive-or (xor)

Nand

Nor

Boolean Algebra The axioms (or postulates) of Boolean Algebra (A1) X=0 หรือ (A1’) X=1 (A2) If X=0, then X’=1 (A2’) If X=1, then X’=0 (A3) 0·0 = 0 (A3’) 1+1 = 1 (A4) 1·1 = 1 (A4’) 0+0 = 0 (A5) 0·1 = 1·0 = 0 (A5’) 1+0 = 0+1 = 1 Note We use a prime (’) to denote an inverter’s function.

Theorems involving a single variable: (T1) X+0 = X. (T1’) X·1 = X Theorems involving a single variable: (T1) X+0 = X (T1’) X·1 = X (Identities) (T2) X+1 = 1 (T2’) X·0 = 0 (Null elements) (T3) X+X = X (T3’) X·X = X (Idempotency) (T4) (X’)’ = X (Involution) (T5) X+X’ = 1 (T5’) X·X’ = 0 (complements) These theorems can be proved to be true. Let us prove T1: [X=0] 0+0=0 (true, according to A4’) [X=1] 1+0=1 (true, according to A5’)

Theorems involving two or three variables: (T6). X+Y = Y+X Theorems involving two or three variables: (T6) X+Y = Y+X (T6’) X·Y = Y·X (Commutativity) (T7) (X+Y)+Z = X+(Y+Z) (T7’)(X·Y)·Z = X·(Y·Z) (Associativity) (T8) X·Y+X·Z = X·(Y+Z) (T8’) (X+Y)·(X+Z) = X+Y·Z (Distributivity) (T9) X+X·Y = X (T9’) X·(X+Y) = X (Covering) (T10) X·Y+X·Y’ = X (T10’)(X+Y)·(X+Y’) = X (Combining)

(T11). X·Y+X’·Z+Y·Z = X·Y+X’·Z. (Consensus) (T11’) (T11) X·Y+X’·Z+Y·Z = X·Y+X’·Z (Consensus) (T11’) (X+Y)·(X’+Z)·(Y+Z) = (X+Y)·(X’+Z) (T12) (X1·X2· ... ·Xn)’ = X1´+X2´+ ... +Xn’ (T12’) (X1+X2+ ... +Xn)’ = X1´·X2´· ... ·Xn’ ( DeMorgan’s theorems) (T13) X + X’ · Y = X + Y (T13’) X · (X’ + Y) = X · Y Attention to theorem T8’ which is not true for integers and reals. T9 and T10 are used in the minimisation of logic functions.

The most basic representation of a logic function is a truth table. A truth table lists the output of the circuit for every possible input combination. There are 2n rows in a truth table for an n-variable function.

Gates Three basic gates (AND, OR, NOT) are sufficient to build any combinational digital logic system.

Gates (2) Two more logic functions are obtained by combining NOT with an AND or OR function in a single gate.

1

Equivalent gates according to DeMorgan’s theorem

An electrical model In a parallel arrangement electricity will flow through if one or other switch is closed. In a series arrangement both switches must be closed. a b or a a + b b a b a b a · b and

When SW1 AND SW2 are closed. F = SW1&SW2 When SW1 OR SW2 are closed. F = SW1+SW2

Finding the Boolean expression for a circuit (p+q) ·(p ·q)’ or (p+q) ·(p ·q)

a b c f

Constructing circuits for Boolean expressions To construct a circuit for the expression p'q +q'

Simplification of Boolean Functions General Boolean functions of n variables can be represented by Boolean expressions Truth tables showing the function values for all input combinations Boolean functions can be implemented directly from their expressions, but Complicated expressions may results in circuits Using more gates than necessary or Having longer accumulative gate delay than necessary

การทำ Logic circuits ให้ง่าย วิธีดังนี้ ทำโดยนำทฤษฎีต่างๆ มาใช้ในการลดรูปของสมการให้น้อย ลง ตัวอย่าง จงลดรูปสมการ A + A · B + A’ · B A + A · B + A’ · B = (A + A · B) + A’ · B (T9) = A + A’ · B (T13) = A + B

Minterms (Sum-of-Products) of n variables เป็นอีกวิธีที่จะทำให้ Logic circuits ง่ายลง ซึ่งมีวิธี ทำคือ จะพิจารณา Truth table ที่ได้ผลลัพธ์เป็น 1 โดยนำตัวแปรมาทำการ AND แล้ว OR เพื่อสร้างเป็น Boolean expression ซึ่งมีรูปแบบเป็นผลบวกของผล คูณ (Sum-of-Products) โดยกำหนดค่าดังนี้ A ,B ,C = 1 A’,B’,C’ = 0 ตัวอย่าง

X Y Z F 0 0 0 1 * 0 0 1 0 0 1 0 1 * 0 1 1 0 1 0 0 0 1 0 1 1 * 1 1 0 0 1 1 1 1 * We have f = x’y’z’ + x’yz’ + x y’z + x y z f = x’y’z’ + x’yz’ + x y’z + x y z

But the sum of product of minterms can be further simplified to reduce the number of product terms and the number of inputs of the gates example f = x’y’z’ + x’yz’ + xy’z + xyz = x’z’(y’+y) + xz(y’+y) = x’z’ + xz But, how do we reach the simplest form systematically?

Maxterms (Product-of-Sums) of n variables - Maxterm boolean expression is developed from the 0s in the output column of the truth table. For each 0 in the output column, an Ored term is developed. - Note that the input variables are inverted and then Ored. A ,B ,C = 0 A’,B’,C’ = 1

Input Output C B A F 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 * 1 0 1 1 1 1 0 1 1 1 1 0 * Maxterm Boolean expression : f = (c’+b+a) · (c’+b’+a’)

Input Output C B A F 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 1 จงหา Minterm Boolean expression Maxterm Boolean expression

Karnaugh Map Simplication Karnaugh maps เป็นอีกวิธีที่จะทำให้ Logic circuits ง่ายลง ซึ่งมีวิธีดังนี้ two variables B’(0) B(1) Input Output A B Y 0 0 0 0 1 1 1 0 1 1 1 1 A’(0) 1 A (1) 1 1 Y = A + B

- three variables and four variables C’(0) C(1) A’B’(00) A’B (01) AB (11) AB’(10) (C)

three variables Input Output C B A F 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 C’(0) C(1) C B A F 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0 A’B’(00) A’B (01) AB (11) AB’ (10) 1 1 1 F = C’ + A’B + AB’

four variables Inputs Output Y = AC + A’C’D’ A B C D Y 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 C’D’ C’D CD CD’ 1 A’B’(00) A’B (01) AB (11) AB’ (10) 1 1 1 1 1 Y = AC + A’C’D’

Mapping with maxterm expression Input Output C C’ A B C F 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 1 A+B (0+0) A+B’ (0+1) A’+B’(1+1) A’+B (1+0) 1 F = (B + C) · (A’+C)

Maxterm Minterm

Don’t cares on Karnaugh maps ในวงจร logic บางวงจรสามารถออกแบบโดยไม่ระบุ output บางตัวว่า เป็น 1หรือ 0 Output ที่ไม่สนใจหรือไม่สามารถระบุ output ได้นี้ เรียกว่า “Don’t care”

การเขียน logic diagram ในรูปของ function F(a,b,c,…) = S(0,1,2,3,…) 0 1 0 0 1 1 2 3 0 1 3 2 4 5 7 6 0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10

Inputs ตำแหน่ง A B C D 0 0 0 0 0 0 0 0 1 1 0 0 1 0 2 0 0 1 1 3 0 1 0 0 4 0 1 0 1 5 0 1 1 0 6 0 1 1 1 7 1 0 0 0 8 1 0 0 1 9 1 0 1 0 10 1 0 1 1 11 1 1 0 0 12 1 1 0 1 13 1 1 1 0 14 1 1 1 1 15

ตัวอย่าง F(a,b,c) = S(3,4,6,7) b bc a 1 1 1 1 a c

five variables DE BC 00 01 11 10 DE BC 00 01 11 10 00 4 12 8 01 1 5 13 4 12 8 01 1 5 13 9 11 3 7 15 10 2 6 14 00 16 20 28 24 01 17 21 29 25 11 19 23 31 27 10 18 22 30 26

F(A,B,C,D,E) (0,2,5,7,13,15,17,18,19,21,23,29,31) A = 0 A = 1 DE BC 00 01 11 10 DE BC 00 01 11 10 00 1 01 11 10 00 01 1 11 10

F(A,B,C,D,E) (0,2,5,7,13,15,17,18,19,21,23,29,31) A = 0 A = 1 DE BC 00 01 11 10 DE BC 00 01 11 10 00 1 01 11 10 00 01 1 11 10  F(A,B,C,D,E) หรือ X = CE + B’C’DE’ +AB’E+A’B’C’E’        53

 F(A,B,C,D,E) หรือ X = CE + B’C’DE’ +AB’E+A’B’C’E’       

Six-Variable K-Map EF CD 00 01 11 10 EF CD 00 01 11 10 00 4 12 8 01 1 4 12 8 01 1 5 13 9 11 3 7 15 10 2 6 14 00 16 20 28 24 01 17 21 29 25 11 19 23 31 27 10 18 22 30 26 EF CD 00 01 11 10 EF CD 00 01 11 10 AB = 10 AB = 11 00 32 36 44 40 01 33 37 45 41 11 35 39 47 43 10 34 38 46 42 00 48 52 60 56 01 49 53 61 57 11 51 55 63 59 10 50 54 62 58

Six-Variable K-Map EF CD 00 01 11 10 00 1 01 11 10 EF CD 00 1 01 11 10

00 01 11 10 EF AB = 00 CD = 00 10 AB = 01 11 10 AB = 11 AB = 10

Combinational circuits แบบง่ายๆ Half-Adder ใช้ในการบวกเลขฐานสอง Input Output S = Sum C = Carry X Y C S 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 X S Y C

Adder Design Example To design the 4-bit binary adder, we first design two types of adders: a half adder and a full adder. A half adder is a combinational circuit that performs the addition of two bits (no carry in). 1 bit Half Adder A B S Co Boolean expressions for S and Co: S = AB’+A’B = A Å B Co = AB 0 0 0 0 A B S Co 0 1 1 0 1 0 1 0 1 1 0 1 Logic diagram:

Adder Design Example Full adder: a combinational circuit that performs the addition of 3 bits (two bits and a carry-in bit). 0 0 0 0 0 Ci Ai Bi Si Ci+1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 Ai Si Bi FA Ci Ci+1 S = A Å B Å C C = ABC’ +A’BC +AB’C+ABC = AB(C +C’)+C(AB’ + A’B) = AB + C(A + B)

Full Adder Design Example Full adder can be realized with two half adders and an OR gate, since Ci+1 can be expressed as: Ai Si Bi Ci+1 Ci

Binary Decoder Logic with n input lines and 2n output lines. Only one output is a 1 for any given input. Binary Decoder n inputs 2n outputs

truth table for 2 to 4 decoder: Note: Each output is a 2-variable minterm (X'Y', X'Y, XY' or XY) F0 = X'Y' F1 = X'Y F2 = XY' F3 = XY X Y X Y F 1 2 3

3-to-8-Line Decoder

Encoder 2n (or fewer) input lines and n output lines. The output lines generate the binary code corresponding to the input value, assuming only one input is high. An encoder is the reverse function of a decoder

8-to-3-line Encoder 8-to-3 Encoder

Example: Octal-to-Binary Encoder

Code Converter Example Design a circuit that converts a binary-coded-decimal (BCD) to the seven signals required to drive a seven-segment light-emitting diode (LED) display. Assuming the signal 1 illuminates the segment and a logic-0 signal turns off the segment

Code Converter Example Derive the Boolean function for each output - e.g., using the following K-map to derive the Boolean function for output a CD 01 AB 00 11 10 a = A’C + A’BD + A’B’D’+ AB’C’ 00 1 1 01 11 10

C’(0) C(1) A’B’(00) A’B (01) AB (11) AB’ (10) 1 1 1

การสร้างวงจรแสดง : ลูกเต๋า 6 ด้าน ถ้าต้องการสร้างวงจรที่แสดงสัญลักษณ์ในการออกลูกเต๋าแต่ละหน้าดังนี้ โดยใช้ LED วางตามตำแหน่งเพื่อแสดงการออกลูกเต๋าที่ทอดได้ในแต่ละหน้า A B C D E F G

Karnaugh maps with XOR and XNOR

Truth table : A’B + AB’ = A + B A B A’ B’ A’B AB’ A’B + AB’ A + B 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0

XNOR :

Truth table : AB + A’B’ = (A + B)’ A B A’ B’ AB A’B’ AB + A’B’ (A + B)’ 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1