Center of Mass and Center of gravity

Slides:



Advertisements
งานนำเสนอที่คล้ายกัน
ชุดที่ 1 ไป เมนูรอง.
Advertisements

บทที่ 3 การสมดุลของอนุภาค.
การวิเคราะห์ข้อมูลเบื้องต้น
เรื่อง น้ำหนัก, แสง-เงา โดย สุภา จารุภูมิ กลุ่มสาระการเรียนรู้ศิลปะ
การเขียนรูปร่าง รูปทรงเรขาคณิต
รูปเรขาคณิต แบ่งเป็น 2 ประเภท รูปเรขาคณิตสองมิติ รูปเรขาคณิตสามมิติ
คณิตศาสตร์เพิ่มเติ่ม ค เรื่อง วงกลม โดย ครูนาตยา บุญเรือง
รู ป ว ง ก ล ม พัฒนาโดย นายวรวุธ อัครกตัญญู
การวาดเส้นองค์ประกอบศิลป์
พื้นที่ผิวและปริมาตร
Engineering Problem Solving Program by Using Finite Element Method
การศึกษาเกี่ยวกับแรง ซึ่งเป็นสาเหตุการเคลื่อนที่ของวัตถุ
ระบบอนุภาค การศึกษาอนุภาคตั้งแต่ 2 อนุภาคขึ้นไป.
โมเมนตัมเชิงมุม เมื่ออนุภาคเคลื่อนที่ โดยมีจุดตรึงเป็นจุดอ้างอิง จะมีโมเมนตัมเชิงมุม โดยโมเมนตัมเชิงมุมหาได้ตามสมการ ต่อไปนี้ มีทิศเดียวกับ มีทิศเดียวกับ.
รูปร่างและรูปทรง.
ดวงอาทิตย์ขึ้นทางทิศตะวันออก เวลา น. ไปตกยังทิศตะวันตก เวลา 18
แผ่นแผนที่ (แผ่นล่าง)
ความเท่ากันทุกประการ
โพรเจกไทล์ การเคลื่อนที่แบบโพรเจกไทล์         คือการเคลื่อนที่ในแนวโค้งพาราโบลา ซึ่งเกิดจากวัตถุได้รับความเร็วใน 2 แนวพร้อมกัน คือ ความเร็วในแนวราบและความเร็วในแนวดิ่ง.
บทที่ 6 การเขียนภาพสามมิติ ส่วนที่ 1
บทที่ 3 การเขียนภาพฉายในระนาบสองมิติ (ส่วนที่ 2)
Points, Lines and Planes
กราฟ พื้นที่ และ ปริมาตร
กฎของบิโอต์- ซาวารต์ และกฎของแอมแปร์
5. ส่วนโครงสร้าง คาน-เสา
Application of Graph Theory
ว ความหนืด (Viscosity)
ตัวอย่างปัญหาการเคลื่อนที่แบบโพรเจกไทล์
หน่วยที่ 11 อินทิกรัลสามชั้น
กลุ่มสาระการเรียนรู้คณิตศาสตร์ โรงเรียนอัสสัมชัญอุบลราชธานี
ระบบอนุภาค.
Function and Their Graphs
การจัดแสงสำหรับงานโทรทัศน์
เครื่องเคาะสัญญาณ.
บทที่ 5 แผนภูมิควบคุมสำหรับคุณลักษณะ
 แรงและสนามของแรง ฟิสิกส์พื้นฐาน
หลักการออกแบบ ครูอนุชา สุระถา MR.ANUCHA SURATHA ครูนฤศรณ์ วิมลประสาร MR.NARUSORN WIMONPRASARN.
การเคลื่อนที่แบบโปรเจคไตล์ (Projectile Motion) จัดทำโดย ครูศุภกิจ
Computer Graphics เรขาคณิต 2 มิติ 1.
โดย ครูเพ็ญนภา ทองนุ่ม
หลักการโปรแกรมเบื้องต้น
บทที่ 9 สถิติที่ใช้ในการประเมินผล
ภาพฉายหลายมุมมอง (Multi-view Projection)
เรื่อง สมาร์ทคิดกับคณิตศาสตร์
พีระมิด.
จงคำนวณหา y-coordinate ของจุด Centroid ของพื้นที่ดังรูป
หลักเกณฑ์การออกแบบ.
การจัดองค์ประกอบของภาพ
ครู สุนิสา เมืองมาน้อย
การสะท้อนแสงของผิวโค้ง
แบบฝึกหัด จงหาคำตอบที่ดีที่สุด หรือหาค่ากำไรสูงสุด จาก
ไฮเพอร์โบลา (Hyperbola)
โดยครูศกุนต์ ก้อนแก้ว
รูปทรงเรขาคณิต จัดทำโดย เด็กชายสุวพิชญ์ สินธุแปง ชั้น ม. 1/4 เลขที่ 14
1. เลนส์นูน เป็นเลนส์ที่ผิวโค้งตรง กลางหนากว่าบริเวณขอบ 2
หน่วยการเรียนรู้ที่ 6 น แรง.
องค์ประกอบศิลป์ : รูปร่าง และรูปทรง
พื้นที่ผิวและปริมาตรทรงกลม
"" การพิจารณาองค์ประกอบในการถ่ายรูป "" หลักพื้นฐานในการพิจารณาองค์ประกอบในการออกแบบก่อน องค์ประกอบในการออกแบบ.
พื้นที่ผิวและปริมาตรกรวย
-การสะท้อน -การเลื่อนขนาน -การหมุน
Spherical Trigonometry
สนามแม่เหล็กและแรงแม่เหล็ก
ทรงกลม.
คณิตศาสตร์ (ค33101) ชั้นมัธยมศึกษาปีที่ 3 สอนโดย ครูปพิชญา คนยืน.
องค์ประกอบศิลป์ : รูปร่าง และรูปทรง
เส้นโค้งกับอนุพันธ์ สัมพันธ์กันอย่างไร?
การแก้ไขปัญหา วิชา เทคโนโลยีและสารสนเทศ
บทที่ 7 การสร้างและการใช้งาน ฟังก์ชัน อาจารย์ชนิดา คำเพ็ง สาขาวิชาเทคโนโลยีสารสนเทศ คณะวิทยาศาสตร์ และเทคโนโลยี
แรงในชีวิตประจำวัน.
ใบสำเนางานนำเสนอ:

Center of Mass and Center of gravity

Center of Mass and Center of gravity

Center of Mass and Center of gravity จุดศูนย์กลางมวล (Center of mass, com) หรือ จุดศูนย์กลางความโน้มถ่วง (Center of gravity, CG.) หมายถึงจุดศูนย์รวมของแรงดึงดูด หรือน้ำหนัก ของโลกที่กระทำต่อวัตถุ อาจจะอยู่ในหรือนอกวัตถุ ก็ได้

เซนทรอยด์ Centroid

เซนทรอยด์(centroid) เป็นการบอกตำแหน่งศูนย์กลางของรูปร่างวัตถุ (geometric center) สำหรับรูปสามเหลี่ยมจะเป็นจุดที่เส้นมัธยฐานทั้งสามตัดกันพอดี

เซนทรอยด์(centroid) เซนทรอยด์ของวัตถุทรงนูน (convex) จะอยู่ในวัตถุนั้นเสมอ

เซนทรอยด์(centroid) ส่วนวัตถุที่ไม่เป็นทรงนูน เซนทรอยด์อาจอยู่นอกวัตถุก็ได้ ตัวอย่างวัตถุเช่น แหวนหรือถ้วย เซนทรอยด์จะอยู่กึ่งกลางช่องว่างระหว่างวัตถุ

เซนทรอยด์ของรูปร่าง X บนระนาบ สามารถคำนวณได้จากการแบ่งรูปนั้นออกเป็นรูปร่างที่ง่ายกว่าเป็นส่วนๆ X1,X2,...,Xn เป็นจำนวนจำกัด n ส่วน แล้วคำนวณหาเซนทรอยด์ย่อย Ci กับพื้นที่ย่อย Ai ของแต่ละส่วน เพื่อเข้าสูตรนี้

Center of Mass and Center of gravity

จงหาตำแหน่งของจุดเซนทรอยด์ ของวัตถุแผ่นแบนดังรูป x y 2.3 , 1.3 6 1.5 1 9.0 6 4 3.5 2 14.0 7 10 23 13

จงหาตำแหน่งของจุดเซนทรอยด์ ของวัตถุแผ่นแบนดังรูป

จงหาตำแหน่งของจุดเซนทรอยด์ ของวัตถุแผ่นแบนดังรูป