วัสดุในการก่อสร้าง: ส่วนที่ 2/2 เรียบเรียงโดย รศ.ดร.สิทธิชัย แสงอาทิตย์ สาขาวิชาวิศวกรรมโยธา สำนักวิชาวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีสุนารี
วัสดุในการก่อสร้าง: ส่วนที่ 2/2 (สมบัติทางกลของวัสดุ) - แผนภาพหน่วยแรง-ความเครียด - การวิบัติของเหล็กเหนียวและเหล็กหล่อภายใต้แรงดึง - วัสดุเหนียวและวัสดุเปราะ - พฤติกรรมของวัสดุเปราะภายใต้แรงดึงและแรงกดอัด - กฎของฮุค (Hooke’s law)
แผนภาพหน่วยแรง-ความเครียด (Stress-Strain Diagram) ของวัสดุ การทดสอบแรงดึง (tension test) - ใช้หาความสัมพันธ์ระหว่างหน่วยแรงตั้งฉาก (σ) และความเครียดตั้งฉาก (ε) ของวัสดุ Stress: Strain:
Load (kN) Elongation (mm) Area (m) Stress(MPa) Strain (mm/mm) 1.227E-04 11.1 0.0175 90.45 0.00035 31.9 0.0600 259.94 0.00120 37.8 0.1020 308.02 0.00204 40.9 0.1650 333.28 0.00330 43.6 0.2490 355.28 0.00498 53.4 1.0160 435.14 0.02032 62.3 3.0480 507.66 0.06096 64.5 6.3500 525.59 0.12700 8.8900 0.17780 58.8 11.9380 479.14 0.23876
โดยส่วนใหญ่ กราฟในช่วงแรกจะต้องถูกขยาย scale เพื่อให้เห็นพฤติกรรมที่ชัดเจนขึ้น
เหล็กโครงสร้าง
วิธีออฟเซท (Offset method) ใช้ในการหาค่าหน่วยแรงคราก (yielding stress) ของโลหะที่ไม่มีจุดคราก ที่ชัดเจน เช่น อลูมิเนียมและลวดเหล็กอัดแรง เป็นต้น
สมบัติทางกลของวัสดุ
การวิบัติของวัสดุเหนียวโดยการเกิดคอคอด (necking) ก่อนการขาดจากกัน เป็นการวิบัติแบบค่อยเป็นค่อยไป (เหมาะแก่การใช้ทำโครงสร้าง)
การวิบัติของเหล็กเหนียวและเหล็กหล่อภายใต้แรงดึง การวิบัติของเหล็กเหนียวเกิดจากการเลื่อน (slip) ของระนาบของผลึกของเหล็กเนื่องจากหน่วยแรงเฉือน โดยระนาบดังกล่าวทำมุม ≈ 45o กับแนวแกนของตัวอย่างทดสอบ การวิบัติของเหล็กหล่อเกิดจากการแยก (separation)ของระนาบของผลึกของเหล็ก ซึ่งเกิดจากหน่วยแรงดึงในระนาบที่ทำมุม ≈ 90o กับแนวแกนของตัวอย่างทดสอบ
วัสดุเหนียวและวัสดุเปราะ วัสดุเหนียว - เป็นวัสดุที่มีการเปลี่ยนแปลงรูปร่างได้สูงก่อนการวิบัติ เช่น เหล็กโครงสร้าง เป็นต้น (ดูดซึมพลังงานได้มาก) วัสดุเปราะ - เป็นวัสดุที่ไม่เกิดการครากหรือมีแต่น้อยมากก่อนการวิบัติ เช่น เหล็กหล่อและคอนกรีต เป็นต้น
พฤติกรรมของวัสดุเปราะภายใต้แรงดึงและแรงกดอัด คอนกรีต
กฎของฮุค (Hooke’s Law): ข้อจำกัดพื้นฐานในการวิเคราะห์และออกแบบโครงสร้างของวิศวกรโยธา “หน่วยแรงแปรผันโดยตรงกับความเครียด จนถึงจุด proportional limit” เมื่อ E = modulus of elasticity ของวัสดุ ซึ่งเป็นค่าความชันของเส้นกราฟในช่วง linear elastic Est = 760 MPa/0.004 mm/mm = 190 GPa
จบการบรรยาย ส่วนที่ 2/2