งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ

งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ

การวิเคราะห์แบบลูป ตอนที่ ๑ การวิเคราะห์ลูปแบบทั่วไป ตอนที่ ๒ การวิเคราะห์ลูปแบบเป็น รูปแบบ.

งานนำเสนอที่คล้ายกัน


งานนำเสนอเรื่อง: "การวิเคราะห์แบบลูป ตอนที่ ๑ การวิเคราะห์ลูปแบบทั่วไป ตอนที่ ๒ การวิเคราะห์ลูปแบบเป็น รูปแบบ."— ใบสำเนางานนำเสนอ:

1 การวิเคราะห์แบบลูป ตอนที่ ๑ การวิเคราะห์ลูปแบบทั่วไป ตอนที่ ๒ การวิเคราะห์ลูปแบบเป็น รูปแบบ

2 การวิเคราะห์ลูป (Loop Analysis) เรื่องการวิเคราะห์บรานซ์ การใช้กฎของเคอร์ชอฟฟ์ ที่เรียกว่า การ วิเคราะห์บรานซ์ กำหนดกระแสที่มีทิศทางในแต่ละบรานซ์ของ วงจรไฟฟ้า 1. กำหนดทิศทางกระแสไหลในแต่ละบรานซ์ 2. ระบุขั้วไฟฟ้าของตัวต้านทานแต่ละตัวตาม ทิศทางของกระแสไหลในแต่ละบรานซ์ 3. เขียนสมการโดยใช้กฎแรงดันของเคอร์ชอฟฟ์ ในแต่ละลูปปิดอิสระ เขียนสมการโดยใช้กฎแรงดันของเคอร์ชอฟฟ์ ในแต่ละลูปปิดอิสระ 4. ใช้กฎกระแสของเคอร์ชอฟฟ์ให้มีจำนวนโนด น้อยที่สุด ใช้กฎกระแสของเคอร์ชอฟฟ์ให้มีจำนวนโนด น้อยที่สุด 5. หากระแสในแต่ละบรานซ์โดยใช้ดีเทอร์ มิแนนต์ หากระแสในแต่ละบรานซ์โดยใช้ดีเทอร์ มิแนนต์

3 รูปที่ 8.18 การหาจำนวนลูปปิดอิสระของวงจรไฟฟ้า จะเขียนสมการตามกฎแรงดันของเคอร์ชอฟฟ์ในแต่ละลูปปิดอิสระ

4

5 ตัวอย่างที่ 8.12 จงประยุกต์ใช้วิธีการวิเคราะห์บรานซ์ จากวงจรต่อไปนี้

6 วิธีทำ ขั้นที่ 1 กำหนดทิศทางกระแสไหลในแต่ละบรานซ์ ขั้นที่ 2 ระบุขั้วไฟฟ้าตัวต้านทานแต่ละตัวให้สอดคล้องกับทิศทางกระแส

7 ขั้นที่ 3 ใช้กฎแรงดันของเคอร์ชอฟฟ์เพื่อเขียนสมการ ขั้นตอนที่ 4 ใช้กฎกระแสของเคอร์ชอฟฟ์ที่โนด a จะได้

8 ขั้นตอนที่ 5 เขียนสมการเชิงเส้น จากแต่ละลูป หาค่ากระแสด้วยดีเทอร์มิแนนต์

9

10 การแก้ปัญหาโดยการใช้สมการเพียง 2 สมการ ดังนี้

11 การวิเคราะห์ลูปทั่วไป (General Approach Loop Analysis) นิยมใช้กันมาก สามารถลดขั้นตอนการแทนผลของการใช้กฎกระแส ของเคอร์ชอฟฟ์ลงไปในสมการที่ได้จากกฎแรงดันของ เคอร์ชอฟฟ์ (I 1 + I 2 = I 3 ) เป็นการวิเคราะห์โดยใช้กฎแรงดันของเคอร์ชอฟฟ์เพื่อ สร้างสมการพีชคณิตในแต่ละลูปปิดอิสระ ( ในลูปปิด ใดๆ ผลรวมของแรงดันมีค่าเท่ากับศูนย์ )

12 ขั้นตอนในการวิเคราะห์ลูปแบบทั่วไป มีดังนี้ ขั้นที่ 1 กำหนดกระแสลูป (I 1 และ I 2 ) ในทิศทาง ตามเข็มนาฬิกา ขั้นที่ 2 ระบุขั้วไฟฟ้าตัวต้านทานแต่ละตัวตาม ทิศทางของกระแสลูป ขั้นที่ 3 เขียนสมการโดยใช้กฎแรงดันของเคอร์ ชอฟฟ์ในแต่ละลูป ทิศทางตามเข็มนาฬิกา ขั้นที่ 4 หาค่ากระแสลูปด้วยการแก้ปัญหาสมการ พีชคณิตเชิงเส้น

13 ตัวอย่างที่ 8.14 จงหาค่ากระแสไหลผ่านตัวต้านทาน 4 

14 วิธีทำ

15

16

17

18

19

20 การวิเคราะห์ลูปชนิดเป็นรูปแบบ 1. กำหนดกระแสลูปในแต่ละลูปปิดในทิศทางตามเข็ม นาฬิกา 2. การสร้างสมการจะมีจำนวนสมการเท่ากับจำนวนลูป ปิดที่ได้กำหนดไว้ โดยคอลัมน์ที่ 1 ของแต่ละสมการ คือผลรวมของค่าความต้านทานที่กระแสในลูปนั้น ไหลผ่านคูณกับกระแสของลูปนั้น 3. คอลัมน์ต่อๆ ไปเป็นการพิจารณาเทอมร่วม นั่นคือ เทอมของตัวต้านทานที่มีกระแสลูปมากกว่าหนึ่งลูป ไหลผ่านและมีความเป็นไปได้ที่จะมีเทอมร่วม มากกว่าหนึ่งเทอม เทอมร่วมแต่ละเทอมจะเป็นผล คูณระหว่างค่าความต้านทานของตัวต้านทานร่วมกับ กระแสลูปอื่นๆ ที่ไหลผ่านมันและค่าจะเป็นลบเสมอ 4. คอลัมน์ทางขวามือของเครื่องหมายเท่ากับคือผลรวม ทางพีชคณิตของแหล่งจ่ายแรงดันที่แต่ละลูปไหล ผ่าน 5. แก้ปัญหาสมการพีชคณิตเชิงเส้นเพื่อหาค่ากระแส ตามที่ต้องการ

21

22

23

24

25

26

27

28

29


ดาวน์โหลด ppt การวิเคราะห์แบบลูป ตอนที่ ๑ การวิเคราะห์ลูปแบบทั่วไป ตอนที่ ๒ การวิเคราะห์ลูปแบบเป็น รูปแบบ.

งานนำเสนอที่คล้ายกัน


Ads by Google