งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ

งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ

Chapter 3 แบบจำลองข้อมูล : Data Models. แบบจำลองข้อมูล (Data Models) - เป็นแหล่งรวมของแนวคิดที่นำเสนอความเป็นจริงของวัตถุ ข้อมูล และ เหตุการณ์ รวมถึงความสัมพันธ์ระหว่างข้อมูลที่มีความสอดคล้องกัน.

งานนำเสนอที่คล้ายกัน


งานนำเสนอเรื่อง: "Chapter 3 แบบจำลองข้อมูล : Data Models. แบบจำลองข้อมูล (Data Models) - เป็นแหล่งรวมของแนวคิดที่นำเสนอความเป็นจริงของวัตถุ ข้อมูล และ เหตุการณ์ รวมถึงความสัมพันธ์ระหว่างข้อมูลที่มีความสอดคล้องกัน."— ใบสำเนางานนำเสนอ:

1 Chapter 3 แบบจำลองข้อมูล : Data Models

2 แบบจำลองข้อมูล (Data Models) - เป็นแหล่งรวมของแนวคิดที่นำเสนอความเป็นจริงของวัตถุ ข้อมูล และ เหตุการณ์ รวมถึงความสัมพันธ์ระหว่างข้อมูลที่มีความสอดคล้องกัน - การนำแนวคิดต่างๆ มานำเสนอให้เกิดเป็นรูปแบบจำลอง - ใช้ในการสื่อสารระหว่าง Database Designer กับ User เพื่อให้เกิด ความเข้าใจตรงกัน

3 ประเภทของแบบจำลองข้อมูล (Types of Data Models) Conceptual Data Models Implementation Data Models

4 ประเภทของแบบจำลองข้อมูล : เชิงแนวคิด (Types of Data Models : Conceptual) Conceptual Data Models Implementation Data Models - ใช้อธิบายภาพโดยรวมของ ข้อมูล ทั้งหมดในระบบ - แสดงในรูปไดอะแกรมความสัมพันธ์ระหว่าง Entities - ทำให้เกิดความเข้าใจกันระหว่างผู้ออกแบบและผู้ใช้ - ไม่ขึ้นอยู่กับ DBMS - ตัวอย่างเช่น Entity-Relationship Model : E-R Model

5 ประเภทของแบบจำลองข้อมูล : เชิงแนวคิด (Types of Data Models : Conceptual) Conceptual Data Models Implementation Data Models - ใช้อธิบาย โครงสร้างข้อมูล ของฐานข้อมูล - อ้างอิงกับ DBMS

6 พื้นฐานการสร้างแบบจำลองข้อมูล (Data Models Basic Building Blocks) Entities Attributes Relationships Constraints

7 พื้นฐานการสร้างแบบจำลองข้อมูล (Data Models Basic Building Blocks) Entities Attributes Relationships Constraints - บุคคล สิ่งของ หรือเหตุการณ์ ที่เกี่ยวข้องกับข้อมูลที่รวบรวม ไว้เพื่อการจัดเก็บ - ถือเป็นตัวแทนของวัตถุในโลกแห่งความเป็นจริง *** ต่อไปมันจะกลายไปเป็นตาราง ***

8 Attributes พื้นฐานการสร้างแบบจำลองข้อมูล (Data Models Basic Building Blocks) Entities Relationships Constraints - คุณลักษณะ (properties) ของ Entities *** ต่อไปมันจะกลายไปเป็นฟิลด์ของตาราง ***

9 Relationships Attributes พื้นฐานการสร้างแบบจำลองข้อมูล (Data Models Basic Building Blocks) Entities Constraints - ความสัมพันธ์ระหว่าง Entities 1 : 1 1 : M M : M หรือ M : N

10 Constraints Relationships Attributes พื้นฐานการสร้างแบบจำลองข้อมูล (Data Models Basic Building Blocks) Entities - กฎเกณฑ์/ข้อตกลง ของข้อมูล - เกิดความมั่นใจในความเป็นอันหนึ่งอันเดียวกัน - เกิดความสอดคล้องตรงกันของข้อมูล

11 แบบจำลองฐานข้อมูล (Database Model) - รูปแบบหรือวิธีการจัดการเข้าถึงข้อมูลในฐานข้อมูล จำเป็นต้องมีวิธีการ หรือโครงสร้างการจัดการที่แตกต่างกัน ขึ้นอยู่กับ DBMS ที่ใช้

12 แบบจำลองฐานข้อมูล (Database Model) Hierarchical Database Model Network Database Model Relational Database Model Object-Oriented Database Model Multidimensional Database Model

13 แบบจำลองฐานข้อมูล : แบบลำดับชั้น (Hierarchical Database Model)

14 ข้อดี - รูปแบบโครงสร้างเข้าใจง่าย (Tree) - โครงสร้างซับซ้อนน้อยที่สุด - 1:M Relational - ความปลอดภัยในข้อมูลดี มีความคงสภาพที่ดี (Data Integrity) - เหมาะกับข้อมูลที่มีการเรียงลำดับแบบต่อเนื่อง ข้อเสีย - ยากต่อการพัฒนา ต้องเข้าใจโครงสร้างทางกายภาพของข้อมูล - ไม่รองรับความสัมพันธ์แบบ M:M - Structural Dependent & Data Dependent - ไม่สะดวกในการค้นหาข้อมูลในระดับล่าง - ไม่มี DML ใน DBMS - ขาดมาตรฐานการรองรับที่ชัดเจน

15 แบบจำลองฐานข้อมูล : แบบเครือข่าย (Network Database Model) ต่างจากแบบลำดับชั้นอย่างไรหน๊อ

16 แบบจำลองฐานข้อมูล : แบบเครือข่าย (Network Database Model) แบบจำลองฐานข้อมูลแบบเครือข่ายถูกสร้างขึ้น ด้วยเหตุผลที่ เพื่อให้จัดการกับความสัมพันธ์ที่ซับซ้อนที่แบบจำลองฐานข้อมูลแบบ ลำดับชั้นทำไม่ได้ (M:N) เพื่อปรับปรุงประสิทธิภาพของฐานข้อมูล

17 แบบจำลองฐานข้อมูล : แบบเครือข่าย (Network Database Model) ในแบบจำลองแบบเครือข่ายความสัมพันธ์จะเรียกว่า เซต(set) ในแต่ละ เซตจะประกอบด้วยเรคคอร์ดอย่างน้อย 2 ประเภท คือ Owner และ member ซึ่งความสัมพันธ์ที่เกิดขึ้นอาจจะเป็นแบบ 1:N หรือ M:N ซึ่ง หมายถึง member สามารถมีความสัมพันธ์กับ Owner ได้หลาย Owner พนักงานขายหนึ่งคนสามารถออกใบส่งของได้ หลายใบ แต่ละใบจะมีชื่อพนักงานขายเพียง ชื่อเดียว ลูกค้าคนหนึ่งอาจจะมีการซื้อสินค้าได้หลาย ครั้ง จึงอาจจะมีใบส่งของหลายใบและแต่ละ ใบจะมีชื่อผู้ซื้อได้เพียงหนึ่งชื่อเท่านั้น ใบส่งของแต่ละใบอาจจะมีรายการส่งของในใบ แจ้งได้หลายรายการ สินค้าหลาย ๆ รายการสามารถไปปรากฏในใบ ส่งของได้หลายใบ *** ปัจจุบันยังคงมีใช้งานอยู่ในระดับ MainFrame ***

18 แบบจำลองฐานข้อมูล : แบบเครือข่าย (Network Database Model) ข้อดี - รูปแบบโครงสร้างเข้าใจง่าย - สนับสนุนความสัมพันธ์ M:N - มีความยืดหยุ่นในการเข้าถึงข้อมูล - มีความคงสภาพที่ดี (Data Integrity) - DBMS มี DDL และ DML - มีความเป็นมาตรฐาน - Data Independent ข้อเสีย - ระบบโดยรวมยังมีความซับซ้อน และมีข้อจำกัดด้านประสิทธิภาพ - ยากต่อการนำไปใช้ - Structural Dependent

19 แบบจำลองฐานข้อมูล : เชิงสัมพันธ์ (Relational Database Model) - คิดค้นโดย E.F. Codd (จาก IBM) ในปี เป็นแบบจำลองนำเสนอรูปแบบทางแนวคิดที่เข้าใจง่าย - ที่นิยมใช้มากในปัจจุบัน *** - มุมมองข้อมูลมีลักษณะเป็นตารางที่เชื่อมความสัมพันธ์กัน - ใช้ระบบคีย์ (KEY) ในการเชื่อมความสัมพันธ์ Primary Key : PK Foreign Key : FK

20 แบบจำลองฐานข้อมูล : เชิงวัตถุ (Object-Orineted Database Model) - พัฒนาตามภาษาการโปรแกรมจาก SOP  OOP - มองทุกสิ่งเป็น Object ซึ่งประกอบด้วย Data & Operation - Class - Data Member (Properties, Attribute, Variable) - Method (Function) - ยังคงมีคุณสมบัติของ OOP - Encapsulation  การห่อหุ้ม - Inheritance  การสืบทอด - Abstraction  การสร้างขึ้นมา แต่ยังไม่ระบุรายละเอียด - Polymorphism  Overload - มี OODBMS หรือ ODBMS

21 แบบจำลองฐานข้อมูล : เชิงวัตถุ (Object-Oriented Database Model)

22 ข้อดี - Inheritance ทำให้ข้อมูลมีความคงสภาพสูง - Reusable - การนำเสนอเป็นแบบ Visual ทำให้อธิบายหัวข้อความหมายได้ดี ข้อเสีย - ต้องมีผู้เชี่ยวชาญเฉพาะด้าน - ค่าใช้จ่ายสูง - ยังไม่มีมาตรฐานรองรับ

23 แบบจำลองฐานข้อมูล : มัลติไดเมนชั่น (Multidimension Database Model) - พัฒนาจากแบบเชิงสัมพันธ์ - Row & Column จะมีลักษณะเป็นลูกบาศก์ (Data Cube) - สามารถมองข้อมูลได้ 2 ทาง เพื่อให้เห็นปัญหาและสร้างวิธีแก้ได้ดี - ใช้แบบจำลอง Star Schema ในการออกแบบ - มี Fact Table เก็บ fields ทั้งหมดที่จะวัด - มีตาราง Dimension สำหรับ Join กับ Fact Table - ถูกนำไปใช้งานกับคลังข้อมูล (Data Warehousing) - ใช้การเข้าถึงข้อมูลโดยระบบ OLAP * OLAP : OnLine Analytical Processing (ระบบประมวลผลเชิงวิเคราะห์แบบต่อตรง)

24 แบบจำลองฐานข้อมูล : มัลติไดเมนชั่น (Multidimension Database Model)

25 ข้อดี - สามารถนำไปใช้เพื่อวางแผนและสร้างวิธีแก้ปัญหาทางธุรกิจได้ - สามารถนำเสนอข้อมูลได้หลายมุมมอง ข้อเสีย - ต้องมีผู้เชี่ยวชาญเฉพาะด้าน - ค่าใช้จ่ายสูง ในส่วนของ HW & SW เพื่อใช้ในการวิเคราะห์ - เหมาะกับธุรกิจขนาดใหญ่

26 โครงสร้างข้อมูลเชิงสัมพันธ์ (Relational Data Structure) Relation (Table,File) Attribute (Field, Column) Foreign Key : FK Primary Key : PK Cardinality Degree Domain : Rang of Data in each Field Tuple (Record, Row)

27 กฎ 12 ข้อของคอดด์ (Codd’s 12 Relational Database Model) Information Guaranteed Access Systematic Treatment of Null Dynamic On-Line Catalog Based on the Relational Model Comprehensive Data Sublanguage View Updating High-Level Insert, Update and Delete Physical Data Independence Logical Data Independence Integrity Independence Distribution Independence Nonsubversion

28 ฐานข้อมูลเชิงสัมพันธ์ (Database Relations)

29 คุณสมบัติของรีเลชั่น (Properties of Relations) รีเลชั่นต้องมีชื่อกำกับ ซึ่งซ้ำกันไม่ได้ แต่ละ Attribute เก็บค่าได้เพียงค่าเดียว (Atomic : Single Value) แต่ละ Attribute ต้องมีชื่อกำกับ ซึ่งซ้ำกันไม่ได้ ข้อมูลในแต่ละ Attribute ต้องเป็นไปตามข้อกำหนดของ Domain ข้อมูลในแต่ละ Tuple ต้องมีความแตกต่างจะต้องไม่มี Tuple ที่ซ้ำกัน การเรียงลำดับของแต่ละ Attribute ไม่มีความสำคัญใดๆ การเรียงลำดับของ Tuple ไม่มีความสำคัญใดๆ

30 คีย์ (Keys) การกำหนด Attribute หรือกลุ่มของ Attributes เป็น Key เพื่อให้แต่ ละ Tuple มีความแตกต่างกัน การกำหนด Key ให้กับ Relation เพื่อให้สามารถนำ Key ไประบุ Tuple ใน Relation ตามต้องการได้

31 คีย์ (Keys) Candidate Key : CK Primary Key : PK Alternate Key / Secondary Key Foreign Key : FK Composite/Concatenated/Compound Key Super Key


ดาวน์โหลด ppt Chapter 3 แบบจำลองข้อมูล : Data Models. แบบจำลองข้อมูล (Data Models) - เป็นแหล่งรวมของแนวคิดที่นำเสนอความเป็นจริงของวัตถุ ข้อมูล และ เหตุการณ์ รวมถึงความสัมพันธ์ระหว่างข้อมูลที่มีความสอดคล้องกัน.

งานนำเสนอที่คล้ายกัน


Ads by Google