การเคลื่อนที่แบบโปรเจคไตล์ (Projectile Motion) จัดทำโดย ครูศุภกิจ

Slides:



Advertisements
งานนำเสนอที่คล้ายกัน
การชน (Collision) ในการชนกันของวัตถุ วัตถุแต่ละชิ้น จะเกิดการแลกเปลี่ยนความเร็ว และทิศทางในการเคลื่อนที่ โดยอาศัยกฎการอนุรักษ์โมเมนตัม.
Advertisements

การเคลื่อนที่.
ชุดที่ 1 ไป เมนูรอง.
2.1 การเคลื่อนที่ในแนวเส้นตรง
บทที่ 3 การสมดุลของอนุภาค.
บทที่ 2 เวกเตอร์แรง.
สมดุลกล (Equilibrium) ตัวอย่าง
การเคลื่อนที่แบบซิมเปิลฮาร์มอนิกส์ (Simple Harmonic Motion)
(Impulse and Impulsive force)
ลองคิดดู 1 มวล m1 และมวล m2 วิ่งเข้าชนกันแล้วสะท้อนกลับทางเดิม ความเร่งหลังชนของมวล m1 และ m2 เท่ากับ 5 m/s2 และ 2 m/s2 ตามลำดับ ถ้า m1 มีมวล 4 kg มวล.
การวิเคราะห์ความเร็ว
การวิเคราะห์ความเร่ง
บทที่ 3 การเคลื่อนที่.
ทบทวน 1กลศาสตร์ Newton 1.1 Introduction “ระยะทาง” และ “เวลา”
Section 3.2 Simple Harmonic Oscillator
การบ้าน ข้อ 1 จงพิสูจน์ว่า
การศึกษาเกี่ยวกับแรง ซึ่งเป็นสาเหตุการเคลื่อนที่ของวัตถุ
ขั้นตอนทำโจทย์พลศาสตร์
ระบบอนุภาค การศึกษาอนุภาคตั้งแต่ 2 อนุภาคขึ้นไป.
ตัวอย่าง วัตถุก้อนหนึ่ง เคลื่อนที่แนวตรงจาก A ไป B และ C ตามลำดับ ดังรูป 4 m A B 3 m 1 อัตราเร็วเฉลี่ยช่วง A ไป B เป็นเท่าใด.
โมเมนตัมและการชน.
Rigid Body ตอน 2.
แรงตามกฎการเคลื่อนที่ของนิวตัน มี 3 ประเภท คือ 1
จำนวนเต็ม จำนวนเต็ม  ประกอบด้วย                   1. จำนวนเต็มบวก    ได้แก่  1 , 2 , 3 , 4, 5 , ....                   2.  จำนวนเต็มลบ      ได้แก่  -1.
2. การเคลื่อนที่แบบหมุน
ดวงอาทิตย์ขึ้นทางทิศตะวันออก เวลา น. ไปตกยังทิศตะวันตก เวลา 18
เซอร์ ไอแซค นิวตัน Isaac Newton
สเฟียโรมิเตอร์(Spherometer)
โพรเจกไทล์ การเคลื่อนที่แบบโพรเจกไทล์         คือการเคลื่อนที่ในแนวโค้งพาราโบลา ซึ่งเกิดจากวัตถุได้รับความเร็วใน 2 แนวพร้อมกัน คือ ความเร็วในแนวราบและความเร็วในแนวดิ่ง.
การวิเคราะห์ข้อสอบ o-net
การประยุกต์สมการเชิงเส้นตัวแปรเดียว
จำนวนจริง F M B N ขอบคุณ เสถียร วิเชียรสาร.
ข้อสอบ O-Net การเคลื่อนที่แนวตรง.
เส้นตรงและระนาบในสามมิติ (Lines and Planes in Space)
Ultrasonic sensor.
การเคลื่อนที่ใน 1 มิติ (Motion in one dimeusion)
กลศาสตร์ของไหล (Fluid Mechanics)
จำนวนชั่วโมงในการบรรยาย 1 ชั่วโมง
สมการเชิงอนุพันธ์อย่างง่าย
การเคลื่อนที่แบบโปรเจกไทล์ (Projectile motion)
ตัวอย่างปัญหาการเคลื่อนที่แบบโพรเจกไทล์
งานและพลังงาน (Work and Energy).
ระบบอนุภาค.
เครื่องเคาะสัญญาณ.
Equilibrium of a Particle
Chapter 3 Equilibrium of a Particle
การแปรผันตรง (Direct variation)
การกระจัด ความเร็ว อัตราเร็ว
ผลของแรงที่ทำให้วัตถุเคลื่อนที่แบบต่าง ๆ
คลื่นหรรษา ตอนที่ 1 คลื่นหรรษา ตอนที่ 1 โดย อ.ดิลก อุทะนุต.
(สถิตยศาสตร์วิศวกรรม)
(สถิตยศาสตร์วิศวกรรม)
โดย อ.วัชรานนท์ จุฑาจันทร์
คลื่น คลื่น(Wave) คลื่น คือ การถ่ายทอดพลังงานออกจากแหล่งกำหนดด้วยการ
การเคลื่อนที่แบบต่างๆ
นางสาวอารมณ์ อินทร์ภูเมศร์
นางสาวอารมณ์ อินทร์ภูเมศร์
สมบัติที่สำคัญของคลื่น
พลังงาน (Energy) เมื่อ E คือพลังงานที่เกิดขึ้น        m คือมวลสารที่หายไป  และc คือความเร็วแสงc = 3 x 10 8 m/s.
การเคลื่อนที่แบบโพรเจกไทล์
หน่วยที่ 1 ปริมาณทางฟิสิกส์ และเวกเตอร์
วงรี ( Ellipse).
ครูยุพวรรณ ตรีรัตน์วิชชา
หน่วยการเรียนรู้ที่ 6 น แรง.
หน่วยที่ 7 การกวัดแกว่ง
Chi-Square Test การทดสอบไคสแควร์ 12.
-การสะท้อน -การเลื่อนขนาน -การหมุน
แบบทดสอบชุดที่ 1 คำชี้แจง จงเลือกคำตอบที่ถูกต้องที่สุดเพียงคำตอบเดียวทำลงในกระดาษคำตอบที่กำหนดให้
การรวมแรงที่กระทำต่อวัตถุ
การเคลื่อนที่แบบโปรเจคไตล์ (Projectile Motion) จัดทำโดย ครูศุภกิจ
ใบสำเนางานนำเสนอ:

การเคลื่อนที่แบบโปรเจคไตล์ (Projectile Motion) จัดทำโดย ครูศุภกิจ

การเคลื่อนที่แบบโปรเจคไตล์ (Projectile Motion) การเคลื่อนที่แบบโปรเจคไตล์ประกอบด้วยการเคลื่อนที่ 2 แนวพร้อมกัน คือแนวระดับและแนวดิ่ง ซึ่งพบว่าความเร็วต้นทางแนวระดับ ไม่มีผลต่อการเคลื่อนที่ในแนวดิ่ง โดยดูได้จากการตกของวัตถุที่ปล่อยและวัตถุที่ถูกดีด ถ้าดีดแรงตกไกล ดีดเบาตกใกล้ แต่จะตกถึงพื้นพร้อมกับวัตถุที่ปล่อยให้ตกในแนวดิ่ง ณ จุดเริ่มต้น -เดียวกัน แสดงว่า การเคลื่อนที่ในแนวระดับไม่มีผลต่อการเคลื่อนที่ในแนวดิ่ง ดังนั้น จึงแยกคิดการเคลื่อนที่เป็นอิสระต่อกัน 2 แนว ux vx vy v

การเคลื่อนที่ในแนวระดับของการเคลื่อนที่แบบโปรเจคไตล์ ขณะที่วัตถุเคลื่อนที่อยู่ในอากาศจะมีแรงดึงดูดของโลก (mg)กระทำเพียงแรงเดียวเท่านั้น โดยในแนวระดับ แรงกระทำต่อวัตถุมีค่าเป็นศูนย์ (F=0) จาก Fx = max เมื่อ Fx = 0 ดังนั้น ax = 0 ผลก็คือ วัตถุเคลื่อนที่ด้วยความเร็วคงตัว (vx = ux) ดังนั้น สมการในการเคลื่อนที่ในแนวระดับ คือ Sx = ux.t เมื่อ Sx = การกระจัดในแนวระดับ ux = ความเร็วในแนวระดับ t = ช่วงเวลาของการเคลื่อนที่

การเคลื่อนที่ในแนวดิ่งของการเคลื่อนที่แบบโปรเจคไตล์ ในขณะที่วัตถุอยู่ในอากาศ จะมีแรงดึงดูดของโลก (mg) กระทำเพียงแรงเดียว ดังนั้น ความเร่งของวัตถุในแนวดิ่ง ay จึงเท่ากับ g การเคลื่อนที่ของวัตถุแบบโปรเจคไตล์ ในแนวดิ่ง จะเหมือนกับวัตถุที่ตกอย่างอิสระทุกประการ ดังนั้นสมการการเคลื่อนที่ของวัตถุในแนวดิ่งคือ 1.Vy = uy + ay.t 3.Sy = uy.t + ½ ay.t2 โดยที่ ay = g 4.vy2 = uy2 + 2aysy

การหาการกระจัดและความเร็ว ณ ตำแหน่งต่างๆของการเคลื่อนที่แบบโปรเจคไตล์ ux A  sAB sy B c sx จากรูปถ้าต้องการหาการกระจัด A ถึง B (SAB) sx = การกระจัดของวัตถุในแนวระดับ (c B) sy = การกระจัดของวัตถุในแนวดิ่ง (A c) จะได้ว่า ทิศของsAB หาได้จาก เมื่อ  เป็นมุมที่ SAB ทำกับแนวระดับ สรุป การหาการกระจัดของวัตถุเราต้องรู้ sx,sy ซึ่งหาได้จากสมการการเคลื่อนที่ในแต่ละแนว

Vx = ความเร็วในแนวระดับ ณ จุด B ux A B vx  vy vB จากรูป ถ้าต้องการหาความเร็ว ณ จุด B (vB) ซึ่งอยู่ในแนวเส้นสัมผัสกับส่วนโค้ง ณ จุด B Vx = ความเร็วในแนวระดับ ณ จุด B Vy = ความเร็วในแนวดิ่ง ณ จุด B ดังนั้น จะได้ว่า ทิศของvB หาได้จาก เมื่อ  เป็นมุมที่ vB ทำกับแนวระดับ สรุป การหาความเร็วของวัตถุเราต้องรู้ vx,vy ซึ่งหาได้จากสมการการเคลื่อนที่ในแต่ละแนว

ลักษณะการเคลื่อนที่แบบโปรเจคไตล์ แบบทั่วไปๆ ลักษณะการเคลื่อนที่แบบโปรเจคไตล์ แบบทั่วไปๆ 1.มีเฉพาะความเร็วต้นในแนวระดับเพียงแนวเดียว ดังรูป ก 2.มีความเร็วต้นทั้งแนวระดับและแนวดิ่ง ดังรูป ข และ ค u ux  u uy uy  รูป ก รูป ข ux รูป ค การคำนวณหาปริมาณต่างๆ ของการเคลื่อนที่ เหมือนดังที่กล่าวมาข้างต้น รูป ก ay = g , uy = 0 รูป ข ay = g , ux = ucos , uy = usin รูป ค ay = - g , ux = ucos , uy = usin

สรุปเงื่อนไขการเคลื่อนที่แบบโปรเจคไตล์ 1.วัตถุต้องมีการเคลื่อนที่อย่างอิสระ มีแรงดึงดูดของโลก mg กระทำเพียงแรงเดียว 2.ต้องมีความเร็วต้นในแนวระดับ(ux) ส่วนในแนวดิ่ง(uy) จะมีหรือไม่ก็ได้ โดยความเร็วในแนวระดับคงที่เสมอ 3.เวลาที่ใช้ในการเกิดการกระจัดจากจุดหนึ่งถึงจุดหนึ่ง ในแนวระดับ (x) เท่ากับในแนวดิ่ง (y) 4.ณ จุดสูงสุดของโปรเจคไตล์ ความเร็ว vy =0 แต่ vx = ux ดังนั้นความเร็ว ณ จุดสูงสุดจึงเท่ากับ ux 5.การพิจารณาปริมาณในแนวดิ่ง ถ้ามีทิศลงเพียงทิศทางเดียว ay = g แต่ถ้ามีการเคลื่อนที่ 2 ทิศทาง มีขึ้นและมีลง ay = - g 6.สมการการคำนวณ เหมือนการเคลื่อนที่ในแนวตรงทุกประการ

เมื่อได้ t ก็มาหา อัตราเร็ว ux จากสูตร ตัวอย่างที่1 เมื่อปาวัตถุออกไปในแนวระดับจากที่สูง 80 เมตร ปรากฏว่าวัตถุตกห่างจากจุดปาในแนวราบ 20 เมตร จงหาอัตราเร็วของวัตถุที่ปาออกไป วิเคราะห์โจทย์ เราควรเขียนรูปแสดงการเคลื่อนที่ พร้อมใส่รายละเอียด วิธีทำ เมื่อรู้ Sy = 80 m, Sx = 20 m, Uy = 0 , ay = 10 m/s2 ต้องการหา ux แต่เราต้อง หา t แนวดิ่งก่อน จาก Sy = uyt + ½ ayt2 ux แทนค่า 80 = 0 + ½ (10)t2 t = 4 S 80 m เมื่อได้ t ก็มาหา อัตราเร็ว ux จากสูตร จาก Sx = uxt 20 m แทนค่า 20 = ux(4) ดังนั้น ux = 5 m/s

t2 + 3t – 10 = 0 จาก sy = uyt + ½ ayt2 แทนค่า 50 = usin37๐t + ½ (10)t2 ตัวอย่างที่ 2 ชายคนหนึ่งยืนอยู่บนดาดฟ้าตึกสูง 50 เมตร แล้วปาก้อนหินออกไปในแนวทำมุม 37 องศา กับแนวระดับ ด้วยความเร็ว 25 m/s ก. นานเท่าไร ก้อนหินตกถึงพื้น ข.ก้อนหินตกห่างจากตัวตึกเท่าไร วิเคราะห์โจทย์ เขียนรูปแสดงการเคลื่อนที่ พร้อมใส่รายละเอียด เมื่อรู้ว่า u = 25 m/s และ ux =ucos37๐ , uy = usin 37๐ ay = 10 m/s2 , sy = 50 m ก.หาเวลา t ในแนวดิ่ง วิธีทำ จาก sy = uyt + ½ ayt2 ux 37๐ แทนค่า 50 = usin37๐t + ½ (10)t2 U=25m/s 50 = 25(3/5)t + 5t2 uy 50 m 5t2 + 15t – 50 = 0 t2 + 3t – 10 = 0 (t+5) (t-2) = 0 ดังนั้นก้อนหินตกถึงพื้น เมื่อเวลาผ่านไป t = 2 s

ดังนั้น ก้อนหินตกห่างจากตัวตึก 40 เมตร ข.หาระยะที่ก้อนหินตกห่างจากตัวตึก จาก sx = uxt = ucos37๐ t แทนค่าลงไป จะได้ = 25 x 4 / 5 x 2 Sx = 40 m ดังนั้น ก้อนหินตกห่างจากตัวตึก 40 เมตร