ดร. พีระพล ยุวภูษิตานนท์ ภาควิชา วิศวกรรมอิเล็กทรอนิกส์

Slides:



Advertisements
งานนำเสนอที่คล้ายกัน
โปรแกรมฝึกหัด การเลื่อนและคลิกเมาส์
Advertisements

DSP 6 The Fast Fourier Transform (FFT) การแปลงฟูริเยร์แบบเร็ว
วิชา องค์ประกอบศิลป์สำหรับคอมพิวเตอร์ รหัส
ไม่อิงพารามิเตอร์เบื้องต้น
การซ้อนทับกัน และคลื่นนิ่ง
EEET0485 Digital Signal Processing Asst.Prof. Peerapol Yuvapoositanon DSP2-1 2 Discrete-time Signals and Systems สัญญาณและระบบแบบไม่ต่อเนื่องทางเวลา ผศ.ดร.
EEET0485 Digital Signal Processing Asst.Prof. Peerapol Yuvapoositanon DSP3-1 ผศ.ดร. พีระพล ยุวภูษิตานนท์ ภาควิชา วิศวกรรมอิเล็กทรอนิกส์ DSP 5 The Discrete.
EEET0485 Digital Signal Processing Asst.Prof. Peerapol Yuvapoositanon DSP10-1 DSP 10 Multirate Signal Processing การประมวลผลแบบหลายอัตราสุ่ม ดร. พีระพล.
DSP 6 The Fast Fourier Transform (FFT) การแปลงฟูริเยร์แบบเร็ว
DSP 4 The z-transform การแปลงแซด
DSP 7 Digital Filter Structures โครงสร้างตัวกรองดิจิตอล
EEET0485 Digital Signal Processing Asst.Prof. Peerapol Yuvapoositanon DSP3-1 ผศ.ดร. พีระพล ยุวภูษิตานนท์ ภาควิชา วิศวกรรมอิเล็กทรอนิกส์ DSP 6 The Fast.
บทที่ 12 การวิเคราะห์การถดถอย
ชื่อสมบัติของการเท่ากัน
Chapter 1 โครงสร้างข้อมูลและอัลกอริธึมส์
จำนวนเต็ม จำนวนเต็ม  ประกอบด้วย                   1. จำนวนเต็มบวก    ได้แก่  1 , 2 , 3 , 4, 5 , ....                   2.  จำนวนเต็มลบ      ได้แก่  -1.
EEET0770 Digital Filter Design Centre of Electronic Systems and Digital Signal Processing การออกแบบตัวกรองดิจิตอล Digital Filters Design Chapter 2 z-Transform.
EEET0770 Digital Filter Design Centre of Electronic Systems and Digital Signal Processing การออกแบบตัวกรองดิจิตอล Digital Filters Design Chapter 3 Digital.
ผศ.ดร. พีระพล ยุวภูษิตานนท์ ภาควิชา วิศวกรรมอิเล็กทรอนิกส์
DSP 4 The z-transform การแปลงแซด
บทที่ 1 อัตราส่วน.
DSP 10 Multirate Signal Processing การประมวลผลแบบหลายอัตราสุ่ม
CHAPTER 18 FOURIER TRANSFORM
จำนวนนับใดๆ ที่หารจำนวนนับที่กำหนดให้ได้ลงตัว เรียกว่า ตัวประกอบของจำนวนนับ จำนวนนับ สามารถเรียกอีกอย่างว่า จำนวนเต็มบวก หรือจำนวนธรรมชาติ ซึ่งเราสามารถนำจำนวนนับเหล่านี้มา.
ระบบอนุภาค.
กลุ่มสาระการเรียนรู้ คณิตศาสตร์ โรงเรียนบ้านหนองกุง อำเภอนาเชือก
กระบวนการคิดทางคณิตศาสตร์
การแปลงภาพสีเทาให้เป็นภาพขาวดำ
จำนวนทั้งหมด ( Whole Numbers )
Kampol chanchoengpan it สถาปัตยกรรมคอมพิวเตอร์ Arithmetic and Logic Unit 1.
แนวทางการปฏิบัติโครงการจูงมือ น้องน้อยบนดอยสูง 1.
ง30212 การเขียนโปรแกรมภาษาคอมพิวเตอร์ โรงเรียนปลวกแดงพิทยาคม
ความสัมพันธ์เวียนบังเกิด
กำลังไฟฟ้าที่สภาวะคงตัวของวงจรไฟฟ้ากระแสสลับ
กำลังไฟฟ้าที่สภาวะคงตัวของวงจรไฟฟ้ากระแสสลับ
สัปดาห์ที่ 7 การแปลงลาปลาซ The Laplace Transform.
สัปดาห์ที่ 13 ผลตอบสนองต่อความถี่ Frequency Response (Part I)
สัปดาห์ที่ 6 วงจรไฟฟ้าสามเฟส Three-Phase Circuits (Part II)
ผศ.วิภาวัลย์ นาคทรัพย์ ภาควิศวกรรมไฟฟ้า มหาวิทยาลัยสยาม
สัปดาห์ที่ 15 โครงข่ายสองพอร์ท Two-Port Networks (Part I)
Electrical Circuit Analysis 2
การวิเคราะห์วงจรในโดเมน s Circuit Analysis in The s-Domain
การวิเคราะห์วงจรโดยใช้ฟูริเยร์
ภาควิชาวิศวกรรมไฟฟ้า มหาวิทยาลัยสยาม
การวิเคราะห์วงจรโดยใช้ฟูริเยร์
Asst.Prof.Wipavan Narksarp Siam University
บทที่ 3 การวิเคราะห์ Analysis.
สถาปัตยกรรมคอมพิวเตอร์ (Computer Architecture)
การดำเนินการทดสอบทางการศึกษาแห่งชาติ (O-NET)
รองศาสตราจารย์ ดร.เอมอัชฌา วัฒนบุรานนท์
ผศ.ดร. พีระพล ยุวภูษิตานนท์ ภาควิชา วิศวกรรมอิเล็กทรอนิกส์ CESdSP
DSP 4 The z-transform การแปลงแซด
ผศ.ดร. พีระพล ยุวภูษิตานนท์ ภาควิชา วิศวกรรมอิเล็กทรอนิกส์
ค21201 คณิตศาสตร์เพิ่มเติม 1
เรื่องการประยุกต์ของสมการเชิงเส้นตัวแปรเดียว
วิธีเรียงสับเปลี่ยนและวิธีจัดหมู่
เรื่องการประยุกต์ของสมการเชิงเส้นตัวแปรเดียว
ภาษาอังกฤษเพื่อการสื่อสาร อ32204
บทเรียนคอมพิวเตอร์ ช่วยสอน ชั้นมัธยมศึกษาปีที่ 4 เรื่อง ฟังก์ชัน นางสาวอรชุมา บุญไกร โรงเรียนสิชลคุณาธาร วิทยา.
School of Information Communication Technology,
เรื่องการประยุกต์ของสมการเชิงเส้นตัวแปรเดียว
แบบฝึกหัด จงหาคำตอบที่ดีที่สุด หรือหาค่ากำไรสูงสุด จาก
จำนวนจริง จำนวนอตรรกยะ จำนวนตรรกยะ เศษส่วน จำนวนเต็ม จำนวนเต็มบวก
เรื่องการประยุกต์ของสมการเชิงเส้นตัวแปรเดียว
4 The z-transform การแปลงแซด
สื่อการสอนด้วยโปรมแกรม “Microsoft Multipoint”
วิธีเรียงสับเปลี่ยนและวิธีจัดหมู่
Summations and Mathematical Induction Benchaporn Jantarakongkul
โครงการจัดทำฐานข้อมูลผ่านเว็บไซต์
ใบสำเนางานนำเสนอ:

DSP 5 The Discrete Fourier Transform (DFT) การแปลงฟูริเยร์แบบไม่ต่อเนื่อง ดร. พีระพล ยุวภูษิตานนท์ ภาควิชา วิศวกรรมอิเล็กทรอนิกส์ EEET0485 Digital Signal Processing

EEET0485 Digital Signal Processing เป้าหมาย นศ รู้จักความหมายของ อนุกรมฟูริเยร์แบบไม่ต่อเนื่อง (Discrete Fourier Series :DFS) และผลการแปลงจากสัญญาณในโดเมนเวลา นศ เข้าใจความสัมพันธ์ของ การแปลงฟูริเยร์แบบไม่ต่อเนื่อง (Discrete Fourier Transform: DFT) และ DFS นศ สามารถทำการแปลง DFT กับสัญญาณเชิงเวลาใดๆได้ EEET0485 Digital Signal Processing

EEET0485 Digital Signal Processing ทำไมต้อง DFT ? หากต้องการใช้คอมพิวเตอร์หรือตัวประมวลผลมาช่วยคำนวณผลเราต้องการจำนวนลำดับที่จำกัด แต่จากเรื่องของ DTFT ซึ่งเป็นการแปลงฟูริเยร์ มีสมการเป็น สังเกตว่า n มีค่าไม่จำกัด การคำนวณการแปลงฟูริเยร์ด้วยอุปกรณ์คำนวณ จะต้องทำให้ n มีค่าจำกัดเสียก่อน EEET0485 Digital Signal Processing

อนุกรมฟูริเยร์แบบไม่ต่อเนื่อง The Discrete Fourier Series (DFS) ให้สัญญาณที่เป็นรายคาบ ความถี่มูลฐาน เป็น เรเดียน แสดง ได้เป็น ความถี่ฮาร์มอนิก เป็น คือ ค่าสัมประสิทธิ์ ฟูริเยร์ไม่ต่อเนื่อง โดยที่ EEET0485 Digital Signal Processing

EEET0485 Digital Signal Processing ก็เป็นสัญญาณรายคาบ เราแทน Analysis (DFS) equation: Synthesis (IDFS) equation: EEET0485 Digital Signal Processing

EEET0485 Digital Signal Processing ตัวอย่าง หา DFS ของสัญญาณรายคาบ วิธีทำ ดูจากลักษณะสัญญาณ จะได้ คาบเวลา = 4 (N=4 ) k=0 k=1 k=2 k=3 EEET0485 Digital Signal Processing

EEET0485 Digital Signal Processing ตัวอย่าง มีสัญญาณพัลส์ (pulse) เป็น รายคาบดังรูป จงหาอนุกรม DFS วิธีทำ L N dsp_5_1.eps EEET0485 Digital Signal Processing

EEET0485 Digital Signal Processing แปลง DFT เราจะนั่งคำนวณด้วยมือก็ได้… หรือใช้ตัวช่วยจาก อนุกรมเรขาคณิตแบบจำกัด จะดีกว่าไหม? ทำให้ได้ แต่เฉพาะที่ EEET0485 Digital Signal Processing

ช่วงพัลส์บวก L=5 และคาบเป็น N=20 EEET0485 Digital Signal Processing

ช่วงพัลส์บวก L=5 และคาบเป็น N=40 EEET0485 Digital Signal Processing

ช่วงพัลส์บวก L=5 และคาบเป็น N=60 EEET0485 Digital Signal Processing

ช่วงพัลส์บวก L=7 และคาบเป็น N=60 EEET0485 Digital Signal Processing

EEET0485 Digital Signal Processing ข้อสังเกตุ ช่วงระยะพัลส์บวก สัมพันธ์กับ คาบเวลาและขนาดของผลการแปลง DFS ดังนี้ EEET0485 Digital Signal Processing

DFS กับ z-transform และ DTFT สำหรับสัญญาณจำนวนจำกัดใดๆ N=6 5 จัดให้เป็น สัญญาณที่เป็นคาบได้โดยใช้สัญญาณเฉพาะ n = 0 ถึง N-1 … และบวกรวม 5 EEET0485 Digital Signal Processing

DFS กับ z-transform และ DTFT (ต่อ) ความสัมพันธ์ DFS และ DTFT EEET0485 Digital Signal Processing

EEET0485 Digital Signal Processing DFT กับ DFS DFS เป็นการแปลงสัญญาณเชิงเวลาไม่ต่อเนื่องและเป็นคาบ ให้เป็นสัญญาณเชิงความถี่แบบไม่ต่อเนื่องและเป็นคาบ แต่สัญญาณบางอย่างทั่วๆไป อาจจะไม่เป็นคาบก็ได้ ในการวิเคราะห์จึงต้องตัดสัญญาณนั้นมาหนึ่งช่วงและหา DFS ของช่วงสัญญาณนั้น ซึ่งเราสมมติให้เป็นช่วงหนึ่งคาบ และเราเรียกการแปลง DFS กับสัญญาณเพียงหนึ่งคาบนั้นว่าการแปลง DFT DFT เป็นการแปลงที่ ใช้การหา DFS ของสัญญาณเพียงหนึ่งคาบ EEET0485 Digital Signal Processing

EEET0485 Digital Signal Processing CTFT DTFT 1 คาบ DFS k N-1 N-1 DFT k N-1 N-1 EEET0485 Digital Signal Processing

การเพิ่มจำนวนศูนย์ (zero padding) ตัวอย่าง เป็นสัญญาณที่มีค่าเป็นหนึ่งเฉพาะย่าน นั่นคือ ตัวอย่างเมื่อเพิ่มศูนย์ 4 ตัว EEET0485 Digital Signal Processing

ผลการแปลง DTFT ของ x(n) dsp_5_6.eps EEET0485 Digital Signal Processing

EEET0485 Digital Signal Processing หา DFT ของ x(n) k=0 k=1 k=2 k=3 EEET0485 Digital Signal Processing

EEET0485 Digital Signal Processing dsp_5_7.eps EEET0485 Digital Signal Processing

EEET0485 Digital Signal Processing dsp_5_8.eps EEET0485 Digital Signal Processing

EEET0485 Digital Signal Processing dsp_5_9.eps EEET0485 Digital Signal Processing

EEET0485 Digital Signal Processing dsp_5_10.eps EEET0485 Digital Signal Processing

ความละเอียด (Resolution) ของการคำนวณสเปคตรัม การเพิ่มศูนย์ Zero padding เป็นการเติมจุดคำนวณให้มากขึ้น เพื่อช่วยในการเพิ่ม ความหนาแน่น (density) ของการแสดงสเปคตรัม แต่ไม่ได้เป็นการเพิ่มความละเอียด (resolution) ในการวิเคราะห์สเปคตรัม ต้องเพิ่มจำนวนจุด (point) ในการคำนวณ DFT ตัวอย่าง ลำดับ x(n) มีองค์ประกอบความถี่ อยู่สองความถี่ EEET0485 Digital Signal Processing

สำหรับสัญญาณ x(n) n=0 ถึง 9 EEET0485 Digital Signal Processing

EEET0485 Digital Signal Processing เพิ่มศูนย์อีก 40 ตัว EEET0485 Digital Signal Processing

แม้เพิ่มศูนย์อีก 90 ตัว ก็ไม่เพิ่มความละเอียด EEET0485 Digital Signal Processing

ใช้สัญญาณ x(n) จำนวน 100 ลำดับ จะเห็นรายละเอียดของสองความถี่ EEET0485 Digital Signal Processing

EEET0485 Digital Signal Processing สรุป DFT ใช้ในการคำนวณการแปลงฟูริเยร์ ด้วยตัวประมวลผล (คอมพิวเตอร์ หรือ โปรเซสเซอร์) DFT ก็คือ DFS สำหรับสัญญาณเพียงหนึ่งคาบ DFT (DFS) มีความเชื่อมโยงกับการแปลงแซด และ DTFT การเพิ่มศูนย์ Zero padding เป็นการเติมจุดคำนวณให้หนาแน่นมากขึ้นแต่ไม่ช่วยเรื่องความละเอียดของสเปคตรัม EEET0485 Digital Signal Processing