Recursion.

Slides:



Advertisements
งานนำเสนอที่คล้ายกัน
Texture การประมวลผลภาพแบบดิจิตอล Ian Thomas
Advertisements

จำนวน สถานะ NUMBER OF STATES. ประเด็นที่ สนใจ The number of distinct states the finite state machine needs in order to recognize a language is related.
Data Structures and Algorithms
Data Structures and Algorithms
Stack.
Inductive, Deductive Reasoning ผศ.( พิเศษ ) น. พ. นภดล สุชาติ พ. บ. M.P.H.
Merchant Marine Training Centre วิชาการเป็นเลิศ เชิดชู คุณธรรม ผู้นำ.
Doctor’s Orders. Take up to start doing a particular job or activity. Take up เริ่มต้นดำเนินการ.
โครงสร้างควบคุมการทำงาน
วิธีการ Auto ship.
การสร้าง WebPage ด้วย Java Script Wachirawut Thamviset.
Chapter 3 Simple Supervised learning
หลักสูตรอบรมครู คอมพิวเตอร์ หลักสูตรอบรมครู คอมพิวเตอร์ หลักสูตรที่ ๑ ทักษะการโปรแกรม เบื้องต้น วันที่สาม.
Programming & Algorithm
Function ธนวัฒน์ แซ่ เอียบ. What is a function ฟังก์ชันในภาษา C เป็นโปรแกรมที่ถูกออกแบบมาเพื่อ ใช้แก้ปัญหางานใดงานหนึ่งโดยเฉพาะ ฟังก์ชันจะเปลี่ยน input.
 How do we improve the test?  Why do we have to improve the test?
ว เคมีพื้นฐาน พันธะเคมี
How do scientists think and find( พบ ) answers?.
ปริมาณสัมพันธ์ ผู้สอน อ. ศราวุทธ แสงอุไร Composition Stoichiometry ว ปริมาณสัมพันธ์ สถานะของ สาร และเคมีไฟฟ้า นายศราวุทธ แสงอุไร ครูวิชาการสาขาเคมี
ครูรุจิรา ทับศรีนวล “Room service”. “Room service”
TEST FOR 3RD GRADERS IN THAILAND: COMPARATIVE STUDY Pimlak Moonpo Valaya Alongkorn Rajabhat University under the Patronage Assoc. Prof. Dr. Maitree Inprasitha.
PHP FRAMEWORK – Web Programming and Web Database Asst. Prof. Dr. Choopan Rattanapoka.
Timed Math Quiz. โปรแกรมสุ่มคำนวณเลขแข่งกับ เวลา.
รศ. ดร. บุญธีร์ เครือตราชู รศ. กฤตวัน ศิริบูรณ์ KMITL Data Structures & Algorithms : Stack & Queue 1 Stack & Queue Lecturers : Boontee Kruatrachue.
1 exit() and break C++ provides a way to leave a program early (before its natural finish) with the exit() function. The format of exit() is as follows:
Linked List ( ต่อ ) Lecturer : Kritawan Siriboon, Room no. 913 Text : Data Structures & Algorithm Analysis in C, C++,… Mark Allen Weiss, Addison Wesley.
รศ. ดร. บุญธีร์ เครือตราชู รศ. กฤตวัน ศิริบูรณ์ KMITL Data Structures & Algorithms : Recursion 1 Recursion Lecturers : Boontee Kruatrachue Room.
Page : Stability and Statdy-State Error Chapter 3 Design of Discrete-Time control systems Stability and Steady-State Error.
Recursion Lecturers : Boontee Kruatrachue Room no Kritawan Siriboon Room no. 913 Text : Data Structures & Algorithm.
D 2 E 1 S E M N G ม. I G I T Grammar A L 4.0.
สื่อการเรียนรู้ด้วยตัวเอง ชุดฝึกเขียนสรุป (Writing Summary)
List, Stack, Queue 2018/9/21.
การประมวลผลแบบวน ( LOOP )
Integrity Constraints
พื้นฐานการเขียนแบบทางวิศวกรรม
INC 161 , CPE 100 Computer Programming
Data Structure & Algorithm Concept
“ชีวิตที่ไร้กังวล” A WORRY FREE LIFE. “ชีวิตที่ไร้กังวล” A WORRY FREE LIFE.
1. นี่เป็นสิ่งที่พระเยซูทรงทำ พระองค์ทรงรักษาทุกคน ที่เจ็บป่วยให้หายดี
Stack Sanchai Yeewiyom
Computer Programming การเขียนโปรแกรมคอมพิวเตอร์
Graph Lecturer : Kritawan Siriboon, Boontee Kruatrachue Room no. 913
Graph Lecturer : Kritawan Siriboon, Boontee Kruatrachue Room no. 913
Dr.Surasak Mungsing CSE 221/ICT221 การวิเคราะห์และออกแบบขั้นตอนวิธี Lecture 13: การคำนวณได้และการตัดสินใจของปัญหา ที่ยากต่อการแก้ไข.
ระเบียบวิธีวิจัยพื้นฐานทางการเงิน
Linked List Lecturer : Kritawan Siriboon, Room no. 913
บทที่ 1 ความรู้เบื้องต้น เกี่ยวกับระบบสารสนเทศ
การวัดอัลกอริทึม (Analysis of Algorithm)
Dr.Surasak Mungsing CSE 221/ICT221 การวิเคราะห์และออกแบบขั้นตอนวิธี Lecture 04: การวิเคราะห์หาความซับซ้อนด้านเวลา ในรูป.
Review of the Literature)
การเขียนโปรแกรมคอมพิวเตอร์
คำเทศนาชุด: ท่านมีของประทาน
การเขียนโปรแกรมย่อย.
1 ยอห์น 1:5-7 5 นี่เป็นเรื่องราวซึ่งเราได้ยินจากพระองค์และประกาศแก่ท่าน คือพระเจ้าทรงเป็นความสว่าง ในพระองค์ไม่มีความมืดเลย 6 ถ้าเราอ้างว่ามีสามัคคีธรรมกับพระองค์แต่ยังดำเนินในความมืด.
Linked List (ต่อ) Lecturer : Kritawan Siriboon, Room no. 913
Chapter 7 ฟังก์ชัน Function.
ระเบียบวิธีวิจัยพื้นฐานทาง การตลาด
ที่มาและหน่วยงานกาชาดต่างๆ
Dr.Surasak Mungsing CSE 221/ICT221 การวิเคราะห์และออกแบบขั้นตอนวิธี Lecture 05: การวิเคราะห์ความซับซ้อนของ ขั้นตอนวิธีการเรียงลำดับข้อมูล.
Data Structures & Algorithms Using Python
แล้วไงเกี่ยวกับความจริง What About Truth?
Data Structures & Algorithms Using Python
1. พระเยซูทรงต้องการให้เราเป็น เหมือนพระองค์
ตอนที่ 4: เคลื่อนไปกับของประทานของท่าน Part 4: Flowing In Your Gift
การวิเคราะห์และออกแบบขั้นตอนวิธี
โครงการสัมมนาเชิงปฏิบัติการบูรณาการภาครัฐและเอกชนในการจัดยุทธศาสตร์เศรษฐกิจภาคตะวันออก This template can be used as a starter file to give updates for.
ระเบียบวิธีวิจัยพื้นฐานทางธุรกิจ
การสร้างผังงานโปรแกรม
การวิเคราะห์โจทย์ปัญหา (Problem Analysis)
การวิเคราะห์และออกแบบขั้นตอนวิธี
ใบสำเนางานนำเสนอ:

Recursion

Why recursion ? When would I use recursion? What is recursion? Why recursion ? When would I use recursion?

Iteration : กิน 1 คำ ทำซ้ำ(repeat) แบบนี้ไปเรี่อยๆ จนหมด Recursion Solving Algorithm Problem : Eat your Meal มองปัญหาได้ 2 แบบ Iteration : กิน 1 คำ ทำซ้ำ(repeat) แบบนี้ไปเรี่อยๆ จนหมด Recursion

Recursion Recursion : โดยแตกปัญหาเป็นปัญหาแบบเดิมที่เล็กลง และรวมกันมาแก้ปัญหาทั้งหมด by breaking down a problem into a smaller versions of itself and then be able to build up to a solution to the entire problem. Problem : Eat your Meal EatMeal (big) : EatMeal (smaller) + ........ EatMeal (bite n) : EatMeal (n-1) + eat 1 bite. /or eat 1 bite + EatMeal (n-1). Recursion เป็นกระบวนการในการมองปัญหาในรูปแบบของปัญหาเดิมที่เล็กลง is the process of defining a problem (or the solution to a problem) in terms of (a simpler version of) itself.

Base Case & Backtracking EatMeal (6) : EatMeal (5) + eat 1 bite . Recursively call EatMeal (5) : EatMeal (4) + eat 1 bite. Recursively call EatMeal (4) : EatMeal (3) + eat 1 bite. Recursively call

Base Case & Backtracking Recursively call Keep calling recursion ==> infinite loop. Must stop somewhere ! ==> base case no recursively call EatMeal (3) : EatMeal (2) + eat 1 bite . Recursively call Backtracking Backtracking to the previous stop EatMeal (2) : EatMeal (1) + eat 1 bite. Backtracking Recursively call Base case (no recursively call) EatMeal (1) : eat 1 bite.

Base Case & Backtracking EatMeal (6) : EatMeal (5) + eat 1 bite . Backtracking Recursively call Done ! EatMeal (5) : EatMeal (4) + eat 1 bite. Backtracking Recursively call EatMeal (4) : EatMeal (3) + eat 1 bite. Backtracking Recursively call

0! = 1 n! = n*(n-1)*(n-2) *...*1 1! = 1 2! = 2 * 1 3! = 3 * 2 * 1 Factorial Iteration 0! = 1 1! = 1 2! = 2 * 1 3! = 3 * 2 * 1 4! = 4 * 3 * 2 * 1 5! = 5 * 4 * 3 * 2 * 1 n! = n*(n-1)*(n-2) *...*1 4! = 4 *3 *2 *1 Iterative : Repeat times i to the result. def fac(n): result = 1 for i in range(n, 0, -1): result *= i return result

n! = n*(n-1) ! if n>1 //recursive case Factorial Recursion Recursion is the process of defining a problem in terms of (a simpler version of) itself. 4! = 4 * 3 * 2 * 1 3! = 3 * 2 * 1 2! = 2 * 1 1! = 1 0! = 1 4! = 4 * 3! 3! = 3 * 2! 2! = 2 * 1! 1! = 1 0! = 1 n! = 1 if n=0, n=1 //base case n! = n*(n-1) ! if n>1 //recursive case def facR (n): # n>=0 if n == 0 or n == 1: return 1 else: return n * facR(n-1)

Fibonaci Sequence Iterative 1 2 3 5 8 f0 f1 f2 f3 f4 f5 f6 f7 ... 13 21 lo hi new lo hi new lo hi new lo hi new lo hi new def fib(n): #iterative, n>=0 if n == 0 or n == 1: return n else: lo, hi = 0, 1 for i in range(2, n+1): new = hi + lo lo = hi hi = new return new

Fibonaci Sequence Recursive 1 2 3 5 8 f0 f1 f2 f3 f4 f5 f6 f7 ... f7 = ? f7 = f6 + f5 fib(n) = //base case fib(n) = //recursive case n if n=0, n=1 fib(n-1) + fib(n-2) if n>1 def fibR(n): # recursive, n>=0 if n <= 1: return n else: return fibR(n-1) + fibR(n-2)

Binary Search Recursive search for x = 17.5 1 3 4 5 17 18 31 33 35 2 6 7 8 L1 H1 M1 17 <17.5 L2 H2 M2 31 17.5< L3,H3 M3 17.5 < 18 search (0, 8, 17.5) H4 < L4 ret_value search (low, high, x) if (high < low) return(-1); //simple case mid = (low+high) div 2; if (x==a[mid]) return(mid); //simple case else if (a[mid] < x) return search (mid+1, high, x) //recursive case else return search (low, mid-1, x) //recursive case

Always have a parameter ต้องมี parameter Recursive Algorithms Recursive algorithms Always have a parameter ต้องมี parameter Recursive call always involves a modified version of the parameter recursive call โดยเปลี่ยน parameter Always have a condition on the parameter to stop the recursion การหยุด recursion ส่วนมากเป็น condition ที่เกี่ยวกับ parameter

return กลับไปที่การ call ครั้งก่อน Stack of Recursion Backtracking : return กลับไปที่การ call ครั้งก่อน def fac (n): # n>=0 if n == 0 or n == 1: return 1 else: #------------------------------- i = fac (4); stack fac(1) 1 1 fac(2) 2 - 1 2*1 = 2 return n * fac (n-1) fac(3) 3 - 2 3*2 = 6 x = fac (n-1) return n * x fac(4) 4 - 6 n x 4*6 = 24 main() i - 24 เพื่อให้เห็นกระบวนการชัดเจน เราจะเปลี่ยน code โดยใช้ x เก็บค่าที่ return จาก fac()

Iteration VS Recursion def fac(n): result = 1 for i in range(n, 0, -1): result *= i return result def facR (n): # n>=0 if n == 0 or n == 1: return 1 else: return n * facR(n-1) RunTime ? Space ?

Tail Recursion execute recursion as the last one. def facR (n): # n>=0 if n == 0 or n == 1: return 1 else: return n * facR(n-1) Tail Recursion execute recursion as the last one. def fibR(n): # recursive, n>=0 if n <= 1: return n else: return fibR(n-1) + fibR(n-2) Tail recursion ง่ายที่จะเขียนแบบ iteration. Iteration ส่วนมากมีประสิทธิภาพ (efficient) กว่า Recursion แย่เพราะ function call ต้อง Passing parameters. Pushing /Poping stack. def searchR ( L, x, low, high ): if low > high: return None mid = (low + high) // 2 if x == L[mid]: return mid elif L[mid] < x: return searchR ( L, x, mid+1, high ) else: return searchR ( L, x, low, mid-1 ) อย่างนั้นทำไมต้อง recursion?

When would I use recursion? Recursion ใช้ได้ดีเมื่อเราต้องทำ iterative branching ไปเรี่อยๆ n-queen problem มี iterative branching และใช้ข้อดีของ call stack ของ recursion เพื่อจำ condition เอาไว้ เมื่อย้อนกลับ backtracking แล้วจะกลับมาเป็นสภาพเดิม Sierpinski triangle (เชอเรอปีนสกี) call recursition 3 ครั้งด้วย parameters ที่ต่างกัน Tower of Hanoi call recursition 2 ครั้ง Recursive call Base case

Tower of Hanoi A B C A B C 4 2 3 1 4 2 3 1 ต้องการหยิบแผ่นดิกส์ทั้งหมดจากเสา A ไปเสา C โดยใช้เสา B ช่วย หยิบทีละแผ่น ต้องหยิบแผ่นที่อยู่ด้านบนก่อน แผ่นใหญ่ห้ามวางทับแผ่นเล็ก

move 4 disks (A->C ) A B C move 3 disks (A->B) Tower of Hanoi What is the problem? move 4 disks (A->C ) A B C 4 2 3 1 What are you doing ? move 3 disks (A->B) 2 3 1 4 What are you doing ? move disk #4 from A to C 2 3 1 4 What are you doing ? move 3 disks (B->C) 4 2 3 1 Is this recursion. How ?

A B C What is a Problem ? What is a Subproblem ? Why 4 ? Tower of Hanoi What is a Problem ? What is a Subproblem ? Why 4 ? Change to general case ! n n-1 4 3 _____ ( big ) : ____ (smaller ) + ... move move 3 2 1 4 A B C Oh! If I move #4 to C, that’s done!

What is a base case ? When do we stop moving? Tower of Hanoi What is a base case ? When do we stop moving? if n == 1: print( n, 'from', A, 'to', C ) else: from, to, aux , A, C, B _____ ( n ) : ____ (n -1 ) move move , A, B, C print( n, 'from', A, 'to', C ) move ( n-1, B, C, A ) 3 2 1 4 A B C

A B C def move(n, A, B, C): if n == 1: print(n, 'from', A, 'to', C) Tower of Hanoi A B C 4 2 3 1 def move(n, A, B, C): if n == 1: print(n, 'from', A, 'to', C) else: move(n-1, A, B, C) move(n-1, B, C, A) 2 3 1 4 2 3 1 4 4 2 3 1

Recursion VS Iteration Iteration is usually more efficient in space and runtime since recursion suffers from function call overhead ( passing parameters, pushing-poping stack). Coding iterative branching, recursion uses less coding time, more readable & understandable and easier for debugging.

Sierpinski Triangle The Sierpinski Triangle, also called Sierpinski Gasket and Sierpinski Sieve, is named after Waclaw Sierpinski, a Polish mathematician (1882-1969).

Sierpinski Triangle The Sierpinski Triangle can be drawn by hand as follows: Start with a single triangle. This is the only triangle in this direction, all the others will be upside down. Inside this triangle, draw a smaller upside down triangle. It's corners should be exactly in the centers of the sides of the large triangle. Now, draw 3 smaller triangles in each of the 3 triangles that are pointing upwards, again with the corners in the centers of the sides of the triangles that point upwards. Now there are 9 triangles pointing upwards. In each of these 9, draw again smaller upside down triangles. In the 27 triangles pointing upwards, again draw 27 triangles pointing downwards. After infinite steps, and if all triangles pointing upwards would be filled, you have the Sierpinski Sieve. Every step, more triangles have to be drawn. This is a recursive process. http://lodev.org/cgtutor/sierpinski.html

Sierpinski Triangle Algorithm Splits a triangle into 4 smaller triangles, and then calls itself for 3 of the 4 smaller triangles. Sierpinski (triangle) Find the mid point of each side of the triangle Draw lines connecting the midpoints, which will form 4 smaller triangles called A, B, C and D, where D in the center. Color in (or cut out) the center triangle D. Do Sierpinski (triangle A) Do Sierpinski (triangle B) Do Sierpinski (triangle C)

Sierpinski Triangle Codes import turtle def drawTriangle(points,color,myTurtle): myTurtle.fillcolor(color) myTurtle.up() myTurtle.goto(points[0][0],points[0][1]) myTurtle.down() myTurtle.begin_fill() myTurtle.goto(points[1][0],points[1][1]) myTurtle.goto(points[2][0],points[2][1]) myTurtle.end_fill() def getMid(p1,p2): return ( (p1[0]+p2[0]) / 2, (p1[1] + p2[1]) / 2) def sierpinski(points,degree,myTurtle): colormap = ['blue','red','green','white','yellow', 'violet','orange'] drawTriangle(points,colormap[degree],myTurtle) if degree > 0: sierpinski([points[0], getMid(points[0], points[1]), getMid(points[0], points[2])], degree-1, myTurtle) sierpinski([points[1], getMid(points[1], points[2])], sierpinski([points[2], getMid(points[2], points[1]), def main(): myTurtle = turtle.Turtle() myWin = turtle.Screen() myPoints = [[-100,-50],[0,100],[100,-50]] sierpinski(myPoints,3,myTurtle) myWin.exitonclick() main() #Sierpinski Triangle #Authour: Alan Richmond, Python3.codes from turtle import * size=800 min=64 pf=0.8660254 # Pythagoras factor: sqrt(3)/2 def S(l,x,y): if l>min: # Not done yet? l=l/2 # scale down by 2 S(l,x,y) # bottom left triangle S(l,x+l,y) # bottom right triangle S(l,x+l/2,y+l*pf) # top triangle else: # Done recursing goto(x,y); pendown() # start at (x,y) begin_fill() # prepare to fill triangle forward(l); left(120) # triangle base forward(l); left(120) # triangle right forward(l) # triangle left end_fill() setheading(0) # face East penup(); goto(x,y) # finish at (x,y) penup() speed('fastest') S(size,-size/2,-size*pf/2.0) done()

PythonTurtle is open-sourced and is released under the MIT license. Turtle graphics is a popular way for introducing programming to kids. It was part of the original Logo programming language developed by Wally Feurzig and Seymour Papert in 1966. PythonTurtle is open-sourced and is released under the MIT license. The turtle module provides turtle graphics primitives, in both object-oriented and procedure-oriented ways. Because it uses tkinter for the underlying graphics, it needs a version of Python installed with Tk support.

turtle.right(25) # หัน ขวา 25 องศา ตามเข็มนาฬิกา from turtle import * # import turtle Turtle starts at x,y (0, 0) turtle.forward(15) # เดินพร้อมลากเส้น 15 pixels ในทางที่หันหน้า  turtle.right(25) # หัน ขวา 25 องศา ตามเข็มนาฬิกา https://docs.python.org/3/library/turtle.html

The N Queen Problem ใส่ N queens บน N x N board Fโดยไม่ให้กินกันเลย Q Q . 1 . . . . . 1 1 . . . . . 1 . Solution for 4 Queen problem. The expected output. Solution for 8 Queen problem. 8 x 8 board has 92 distinct solutions. 12 unique solutions (reduce redundency of symmetry (rotations & reflections)).

N Queen Naive Algorithm Naive Algorithm Generate all possible configurations of queens on board and print a configuration that satisfies the given constraints. ลองใส่ Queen ทุกแบบ ถ้าไม่กินกัน พิมพ์ผลลัพธ์ while (still untried configuration){ board = next configuration; if (noAttacking(board)) print (board); }

Data Structure for Queens – 2D array , Python : list of list . 1 . . . . . 1 1 . . . . . 1 . 2D array / list of list (Python) Q #define N 4 int board[N,N]; b = [4*[0],4*[0],4*[0],4*[0]]

Recursive PutQueen Algorithm Backtracking Algorithm :ใส่ควีนทีละแถว เรีมจากแถวบนสุด ใส่แถวละตัว จะใส่ได้เมื่อไม่ถูกตัวที่ใส่ไปแล้วกิน ok? Q putQueenInRow (0,...) ok? ok? ok? Q void PutQueenInRow (int r, int board[N][N]){ for (int c=0; c<N; c++) // ใล่ใส่ไปทีละ column ทุก col. if (isSafe(board, r,c)) { // ถ้าใส่แล้วไม่ถูกกิน board[r,c] = 1; // ใส่ queen if (r==N-1){ // ถ้าใส่ queen ครบแล้ว printBoard(board); numsol++; }else PutQueenInRow (r+1,board); // ใส่ queen ในแถวถัดไป //backtracking point board[r,c] = 0; // เอา Queen ออกจาก board[r][c]) // เพื่อให้ได้ solution อื่น หรือ // หรือเพราะ queen ตัวนี้แม้ใส่ได้แต่ไม่ทำให้เกิด solution } // if (isSafe(board, r,c)) } Q Q Q Q

Q Q Q Detecting Crashes 3, 4 จะใส่ Q(r, c) ไม่ต้องเช็คแถว แต่ต้องเช็ค 1. col(c) free? Check this col of the row above Q[r,c] 2. up(7) free? Check up diagonal right to Q[r,c] 3. down(6) free? Check down diagonal left to Q[r,c] Queen กิน 8 ทิศ bool isSafe(int board[N][N], int r, int c){ c0 c1 c2 c3 c4 c5 c6 c7 r0 u0 d0 r1 u1 d1 r2 u2 d2 r3 u3 Q (r,c) d3 r4 u4 d4 r5 u5 d5 r6 u6 d6 r7 u7 d7 d14 u8 d13 u9 d12 u10 d11 u11 d10 u12 d9 u13 d8 u14 Q while(r >= 0) if (board[--r][c]) return false; Q Q while(r < N && c>=0 ) if (board[--r][++c]) return false; while(c >= 0 && r >= 0) if (board[--r][--c]) return false; return true; }

Other Data Structures & Safe Checking

Q Queen กิน 8 ทิศ จะใส่ Q(r, c) ต้องเช็ค 3, 4 col(c) free? 4 Detecting Crashes Queen กิน 8 ทิศ c0 c1 c2 c3 c4 c5 c6 c7 r0 u0 d0 r1 u1 d1 r2 u2 d2 r3 u3 Q d3 r4 u4 d4 r5 u5 d5 r6 u6 d6 r7 u7 d7 d14 u8 d13 u9 d12 u10 d11 u11 d10 u12 d9 u13 d8 u14 3, 4 จะใส่ Q(r, c) ต้องเช็ค col(c) free? 4 up(7) free? up(r+c) up(3+4) down(6) free? down(r-c+(n-1)) 3-4+7 เนื่องจากเราใส่ทีละแถว ใส่แล้วใส่แถวถัดไป จึงไม่ต้องเช็คแถว

Q 1, 3 จะใส่ Q(r, c) ต้องเช็ค col(3) free? up(4) free? up(r+c) up(1+3) Detecting Crashes c0 c1 c2 c3 u0 d0 r1 Q d1 u2 d2 u3 d3 d6 u4 d5 u5 d4 u6 จะใส่ Q(r, c) ต้องเช็ค 1, 3 col(3) free? up(4) free? up(r+c) up(1+3) down(1) free? down(r-c+(n-1)) 1-3+3

Data Structure for Save Checking 0 -> false. นอกนั้นทั้งหมด ->true Initialize ทั้งหมด 1 free ทั้งหมด col free? เช็คกี่ col ? int colFree[N]; up free? upFree(r+c) int upFree[(2*N)-1]; down free? downFree(r-c+(n-1)) int downFree[(2*N)-1]; colFree = N*[1] colFree 1 2 3 c0 c1 c2 c3 u0 d0 u1 d1 u2 d2 u3 d3 d6 u4 d5 u5 d4 u6 upFree = (2*N - 1)*[1] Q upFree 1 2 3 4 5 6 downFree = (2*N - 1)*[1] downFree 1 2 3 4 5 6

Data Structure for Queens – 1D array, Python list #define N 4 int board[N,N]; . 1 . . . . . 1 1 . . . . . 1 . Q b = [4*[0],4*[0],4*[0],4*[0]] c3 r1 Q 1-D array int b [N]; b 3 row 1 2 b = N*[-1] b[1] = 3

Initializations : Python N = 8 # N x N Board numSol = 0 # number of solutions b = N*[-1] # indices = rows, b[index] = coloumn, first init to -1 colFree = N*[1] # all N col are free at first upFree = (2*N - 1)*[1] # all up diagonals are free at first downFree = (2*N - 1)*[1] # all down diagonals are free at first putQueen(0, b, colFree, upFree, downFree) # first add at 1st (ie. row 0) print('number of solutions = ', numSol) def printBoard(b): # in next page pass def putQueen(r, b, colFree, upFree, downFree): # in next page

Recursive PutQueen : Python def printBoard(b): print(b) ใส่ควีนทีละแถว เรีมจากแถวบนสุด ใส่แถวละตัว จะใส่ได้เมื่อไม่ถูกตัวที่ใส่ไปแล้วกิน putQueen (0,...) ok? Q def putQueen(r, b, colFree, upFree, downFree): global N global numSol for c in range(N): # ใล่ใส่ไปทีละ column ทุก col. if colFree[c] and upFree[r+c] and downFree[r-c+N-1]: #ใส่ได้? b[r] = c # ใส่ ที่ r, c colFree[c] = upFree[r+c] = downFree[r-c+N-1] = 0 # เปลี่ยน data struct ไม่ให้ใส่แนวนี้ if r == N-1: # ถ้าใส่ควีนครบแล้ว printBoard(b) #print(b) numSol += 1 else: putQueen(r+1, b, colFree, upFree, downFree) # ใส่ควีนแถวถัดไป colFree[c] = upFree[r+c] = downFree[r-c+N-1] = 1 #เอา Queen ออกเพื่อให้ได้ solution อื่น # หรือ เพราะ queen ตัวนี้แม้ใส่ได้แต่ไม่ทำให้เกิด solution ok? ok? ok? Q Q Q Q Q

#define D 2*N //diagonals int numsol = 0; //number of solutions Initializations C #define N 8 #define D 2*N //diagonals int numsol = 0; //number of solutions int main( ) { int b[N]; //board indice are row int colFree[N], upFree[D], downFree[D]; for (int i = 0 ; i < N ; i++ ) colFree[i]= 1; //true for (int i = 0 ; i < D ; i++ ) upFree[i]= downFree[i]= 1; //true PutQueenInRow(0,b,colFree,upFree,downFree); //put in row 0 //recursive printf("Total solutions = %d\n",numsol); return 0; } int numsol = 0; //number of solutions int b[N]; //board indice are row int colFree[N], upFree[D], downFree[D]; PutQueenInRow(0,b,colFree,upFree,downFree); //put in row 0 //recursive

Q Q Q Q Q putQueenInRow (0,...) Q Recursive PutQueen : C void PutQueenInRow (int r,int b[],int colFree[],int upFree[],int downFree[]) { for (int c=0; c<N; c++) //for each column of this row if (colFree[c] && upFree[r+c] && downFree[r-c+N-1]){//if save b[r] = c; //put queen colFree[c] = upFree[r+c] = downFree[r-c+N-1]= 0; //not free any more if (r==N-1){ //if all queens are put printBoard(b); numsol++; }else PutQueenInRow (r+1,b,colFree,upFree,downFree); //put next Q //backtracking point colFree[c] = upFree[r+c] = downFree[r-c+N-1]= 1; //take the Queen out } // if save // for other solutions } //or if doesn’t lead to solution ok? Q ok? ok? ok? Q Q Q if (colFree[c] && upFree[r+c] && downFree[r-c+N-1]){//if save Q b[r] = c; //put queen Q colFree[c] = upFree[r+c] = downFree[r-c+N-1]= 0; //not free any more colFree[c] = upFree[r+c] = downFree[r-c+N-1]= 1; //take the Queen out

A B A B C E : expression T : term F : facter E = T + T | T Recursive Chain Recursive Chain : Function that indirectly calls himself from the other function(s). A B A B C E : expression T : term F : facter E = T + T | T T = F * F | F F = letter | (E) Is this Expression? : A * B + C F F F * T + T E

A B A(formal parameters){ B(actual arguments); } B(formal parameters){ Forward Declaration A B A(formal parameters){ B(actual arguments); } B(formal parameters){ A(actual arguments); B(formal parameters); // C Forward Declaration Because Python looks up the second function at runtime instead, no such forward definition is needed.

E = T + T | T T = F * F | F F = letter | (E) s1="12345" s1.length()= 5 s="ABCDE"; string s2(s,1,3); //s2 = "BCD" from s[1] 3 chars string s3(s,2,2); //s3 = "CD" from s[2] 2 chars C++ bool expression(const string& s){ //E = T+T | T size_t npos = s.find("+"); size_t len = s.length(); if (npos<0 || npos>=len) //notFoundPlus return(term(s)); //E = T else { //E = T+T string s1(s,0,npos); //s1 = s[0] to s[npos-1] string s2(s,npos+1,len-npos+1);//s2=s[npos+1] to end of s2 return(term(s1) && term(s2)); } E = T + T | T T = F * F | F F = letter | (E) int main(){ string s = "A+B*C"; if (expression(s)) cout<<s<<" EXP.\n"; else cout<<s<<" NOT EXP.\n"; return 0; }

bool factor(const string& s){ //F = letter | (E) bool expression(const string& s); bool isletter(char c){ return (c>='a' && c<='z')||(c='A' && c<='Z'); } bool factor(const string& s){ //F = letter | (E) if (s.length()==1 && isletter(s[0])) return true; else { string ss(s,1,s.length()-2); return((s[0]>='(')&&(s[2]>=')')&& expression(ss)); } C++ bool term(const string& s){ //T = F*F | F size_t npos = s.find("*"); size_t len = s.length(); if (npos<0 || npos>=len){ //notFoundStar return(factor(s)); //T = F }else { //T = F*F string s1(s,0,npos); //s1 = s[0] to s[npos-1] string s2(s,npos+1,len-npos+1);//s2=s[npos+1] to end of s2 return(factor(s1) && factor(s2)); }