ตัวผกผันการคูณของเมทริกซ์

Slides:



Advertisements
งานนำเสนอที่คล้ายกัน
สาระที่ 1 จานวนและการดาเนินการ
Advertisements

ค33212 คณิตศาสตร์คอมพิวเตอร์ 6
ระบบจำนวนจริง(Real Number)
กลุ่มสาระการเรียนรู้คณิตศาสตร์ เรื่อง จำนวนเชิงซ้อน
อัตราส่วนของจำนวนหลายๆ จำนวน
ลิมิตและความต่อเนื่อง
บทที่ 3 ลำดับและอนุกรม (Sequences and Series)
Number Theory (part 1) ง30301 คณิตศาสตร์ดิสครีต.
เรื่อง อัตราส่วนตรีโกณมิติ มาสเตอร์วินิจ กิจเจริญ
ชื่อสมบัติของการเท่ากัน
สมการเชิงเส้นตัวแปรเดียว
ทฤษฎีจำนวนเบื้องต้น โดย ครูภรเลิศ เนตรสว่าง โรงเรียนเทพศิรินทร์
จงหาระยะห่างของจุดต่อไปนี้ 1. จุด 0 ไปยัง จุด 0 ไปยัง 2
ทศนิยมและเศษส่วน F M B N โดย นางสาวสุพรรษา ธรรมสโรช.
อสมการ.
การประยุกต์สมการเชิงเส้นตัวแปรเดียว
บทที่ 1 อัตราส่วน.
สับเซต ( Subset ) นิยาม กำหนดให้ A และ B เป็นเซตใด ๆ เรากล่าวว่า A เป็นสับเซต B ก็ต่อเมื่อ สมาชิกทุกตัวของ A เป็นสมาชิกของ B ใช้สัญลักษณ์
บทที่ 3 ร้อยละ ร้อยละ หรือ เปอร์เซ็นต์ หมายถึง เศษส่วนหรืออัตราส่วนที่มีจำนวนหลังเป็น 100 เขียนแทนร้อยละ หรือเปอร์เซ็นต์ ด้วยสัญลักษณ์ %
บทที่ 2 สัดส่วน สัดส่วน หมายถึง ประโยคที่แสดงการเท่ากันของอัตราส่วนสองอัตราส่วน.
บทที่ 8 เมตริกซ์และตัวกำหนด.
สมการเชิงอนุพันธ์อย่างง่าย
จำนวนนับใดๆ ที่หารจำนวนนับที่กำหนดให้ได้ลงตัว เรียกว่า ตัวประกอบของจำนวนนับ จำนวนนับ สามารถเรียกอีกอย่างว่า จำนวนเต็มบวก หรือจำนวนธรรมชาติ ซึ่งเราสามารถนำจำนวนนับเหล่านี้มา.
เทคนิคทางคณิตศาสตร์ในการวิเคราะห์เชิงปริมาณ
กลุ่มสาระการเรียนรู้คณิตศาสตร์ โรงเรียนอัสสัมชัญอุบลราชธานี
เรื่อง การบวก การลบ การคูณ และการหาร นายประยุทธ เขื่อนแก้ว
MAT 231: คณิตศาสตร์ไม่ต่อเนื่อง (4) ความสัมพันธ์ (Relations)
จำนวนทั้งหมด ( Whole Numbers )
Matrix and Determinant
สมการกำลังสอง นางพัชรีย์ ลันดา ผู้สร้าง กลุ่มสาระการเรียนรู้คณิตศาสตร์
ระบบจำนวนเต็ม โดย นางสาวบุณฑริกา สูนานนท์
แฟกทอเรียล (Factortial)
ครูฉัตร์มงคล สนพลาย. เมตริกซ์ (Matrices) เมตริกซ์ คือ การจัดเรียง จำนวนให้อยู่ในรูป สี่เหลี่ยมผืนผ้า ซึ่งประกอบด้วย แถว (Row) และ หลัก (Column)
การแก้สมการพหุนามดีกรีสอง
ค33212 คณิตศาสตร์คอมพิวเตอร์ 6
นิยาม, ทฤษฎี สับเซตและพาวเวอร์เซต
การดำเนินการบนเมทริกซ์
ค33212 คณิตศาสตร์คอมพิวเตอร์ 6
ค33212 คณิตศาสตร์คอมพิวเตอร์ 6
คุณสมบัติการหารลงตัว
ค33211 คณิตศาสตร์สำหรับ คอมพิวเตอร์ 5
ค33211 คณิตศาสตร์สำหรับ คอมพิวเตอร์ 5
ค33211 คณิตศาสตร์สำหรับ คอมพิวเตอร์ 5
ค33212 คณิตศาสตร์คอมพิวเตอร์ 6
จำนวนเต็มกับการหารลงตัว
ค33211 คณิตศาสตร์สำหรับ คอมพิวเตอร์ 5
ค33212 คณิตศาสตร์คอมพิวเตอร์ 6
อินเวอร์สของความสัมพันธ์
โดย : อาจารย์พงศกร ละฟู่ สังกัดระดับชั้นมัธยมศึกษาปีที่ 5
บทเรียนสาระการเรียนรู้คณิตศาสตร์ โดยใช้โปรแกรม Microsoft Multipoint
การหาผลคูณและผลหารของเลขยกกำลัง
นางสาวอารมณ์ อินทร์ภูเมศร์
ทรานสโพสเมตริกซ์ (Transpose of Matrix)
เรื่องการประยุกต์ของสมการเชิงเส้นตัวแปรเดียว
วิธีเรียงสับเปลี่ยนและวิธีจัดหมู่
วงรี ( Ellipse).
เรื่องการประยุกต์ของสมการเชิงเส้นตัวแปรเดียว
เรื่องการประยุกต์ของสมการเชิงเส้นตัวแปรเดียว
เรื่องการประยุกต์ของสมการเชิงเส้นตัวแปรเดียว
เมทริกซ์ (Matrix) Pisit Nakjai.
สื่อการสอนด้วยโปรมแกรม “Microsoft Multipoint”
วิธีเรียงสับเปลี่ยนและวิธีจัดหมู่
บทที่ 1 จำนวนเชิงซ้อน.
คณิตศาสตร์พื้นฐาน ค ชั้นมัธยมศึกษาปีที่ 3 โดย ครูชำนาญ ยันต์ทอง
คณิตศาสตร์พื้นฐาน ค ชั้นมัธยมศึกษาปีที่ 3 โดย ครูชำนาญ ยันต์ทอง
Summations and Mathematical Induction Benchaporn Jantarakongkul
วิธีเรียงสับเปลี่ยนและวิธีจัดหมู่
สมการเชิงเส้นตัวแปรเดียว สอนโดย ครูประทุมพร ศรีวัฒนกูล
หน่วยการเรียนรู้ที่ 6 ทฤษฎีบทพีทาโกรัส
ตัวผกผันการคูณของเมทริกซ์
ใบสำเนางานนำเสนอ:

ตัวผกผันการคูณของเมทริกซ์ ค33212 คณิตศาสตร์คอมพิวเตอร์ 6

บทนิยาม ให้ A = [a]1 x 1 เรียก a ว่าเป็นดีเทอร์มิแนนต์ บทนิยาม ถ้า แล้ว ดีเทอร์มิแนนต์ของ A คือ ad – bc เขียนแทนด้วย det(A) หรือ แล้ว det(A) = (1)(4) – (2)(3) = –2 เช่น แล้ว det(A) = (-1)(-2) – (-2)(-3) = – 4

ตัวอย่างที่ 1 กำหนดให้ A = [aij]2 x 2 จงหาไมเนอร์ของ สมาชิกทุกตัวของ A บทนิยาม ให้ A = [aij]n x n เมื่อ n > 2 ไมเนอร์ของ aij คือ ดีเทอร์มิแนนต์ของเมทริกซ์ที่ได้จากการตัดแถวที่ i และ หลักที่ j ของ A ออก เขียนแทนไมเนอร์ของ aij คือ Mij(A) ตัวอย่างที่ 1 กำหนดให้ A = [aij]2 x 2 จงหาไมเนอร์ของ สมาชิกทุกตัวของ A วิธีทำ เนื่องจาก

จะได้ M11(A) = a22 ดังนั้น จาก จะได้ M12(A) = a21 จาก จะได้ M21(A) = a12 จาก จะได้ M22(A) = a11 จาก

ตัวอย่างที่ 2 กำหนดให้ จงหาไมเนอร์ของ a13 และ a32 วิธีทำ เนื่องจาก จะได้

ตัวอย่าง กำหนด จงหา C11(A) , C32(A) วิธีทำ บทนิยาม ให้ A = [aij]n x n เมื่อ n > 2 ตัวประกอบร่วมเกี่ยว (cofactor) ของ aij คือผลคูณของ (– 1)i+j และ Mij(A) เขียน แทนตัวประกอบร่วมเกี่ยวของ aij ด้วย Cij(A) นั่นคือ Cij(A) = (– 1)i+jMij(A) ตัวอย่าง กำหนด จงหา C11(A) , C32(A) วิธีทำ

วิธีทำ det(A) = a11C11(A) + a12C12(A) + a13C13(A) บทนิยาม ให้ A = [aij]n x n เมื่อ n > 2 ดีเทอร์มิแนนต์ของ A คือ a11C11(A) + a12C12(A) + ... + a1nC1n(A) เขียนแทน ดีเทอร์มิแนนต์ของ A ด้วย det(A) หรือ จงหา det(A) ตัวอย่าง กำหนด วิธีทำ det(A) = a11C11(A) + a12C12(A) + a13C13(A)

วิธีที่ 2 วิธีลัด นำหลักที่ 1 และ 2 ของ A มาเขียนต่อหลัก = (45 – 48) – 4(18 – 24) + 7(12 – 15) = –3 + 24 – 21 = 0 วิธีที่ 2 วิธีลัด นำหลักที่ 1 และ 2 ของ A มาเขียนต่อหลัก ที่ 3 และหาดีเทอร์มิแนนต์ของ A ได้เท่ากับวิธีข้างต้น 105 48 72 45 96 84  det(A) = (45 + 96 + 84) – (105 + 48 + 72) = 0

สมบัติของดีเทอร์มิแนนต์ กำหนดเมทริกซ์ A = [aij]n x n ใด ๆ เมื่อ n > 2 1. det (A) = ai1Ci1(A) + ai2Ci2(A) + ... + ainCin(A) ทุก i = 1,2,...,n ถ้าหา det (A) โดยสมการนี้ จะกล่าวว่าหา det (A) โดยการ กระจายตามแถวที่ i 2. det (A) = a1jC1j(A) + a2jC2j(A) + ... + anjCnj(A) ทุก j = 1,2,...,n ถ้าหา det (A) โดยสมการนี้ จะกล่าวว่าหา det (A) โดยการ กระจายตามหลักที่ j

3. ถ้า A มีสมาชิกในแถวใดแถวหนึ่งหรือหลักใดหลักหนึ่งเป็น 0 ทุกตัวแล้ว det (A) = 0 (เป็นผลของสมบัติข้อ 1 และ 2) 4. ถ้า B ได้จากการสลับแถวสองแถวหรือสลับหลักสองหลักของ A แล้ว det (B) = - det (A) 5. ถ้า A มีแถวสองแถวเหมือนกันหรือหลักสองหลักเหมือนกัน แล้ว det (A) = 0 (เป็นผลของสมบัติข้อ 4) 6. det (At) = det (A) 7. ถ้าคูณสมาชิกทุกตัวในแถวใดแถวหนึ่งหรือหลักใดหลักหนึ่ง ของ A ด้วยค่าคงตัว c แล้ว ดีเทอร์มิแนนต์ของเมทริกซ์ที่ได้คือ c det (A)

8. ถ้า B ได้จาก A โดยสมาชิกแถวที่ i ของ B ได้มาจากการคูณ แถวที่ i ของ A ด้วยค่าคงตัว c และนำไปบวกกับแถวที่ j ของ A เมื่อ i  j แล้ว det (B) = det (A) สมบัตินี้เป็นจริงเมื่อเปลี่ยนจาก แถวเป็นหลัก จากสมบัติข้อ 7 ทำให้ได้ว่า det (cA) = cn det (A) เมื่อ c เป็นค่าคงตัว

จะได้ ตัวอย่าง ถ้า

ตัวอย่าง จงหา det (A) เมื่อกำหนด วิธีทำ คูณแถวที่ 1 ด้วย – 2 แล้ว นำไปบวกกับแถวที่ 2

นำแถวที่ 1ไปบวกกับแถวที่ 3 คูณแถวที่ 1 ด้วย -1 แล้วนำไป บวกกับแถวที่ 4 กระจายตามแถวที่ 1 สมบัติข้อ 7

คูณแถวที่ 1 ด้วย 2 แล้วนำไป บวกกับแถวที่ 2 คูณแถวที่ 1 ด้วย - 1 แล้วนำไป บวกกับแถวที่ 3 กระจายตามหลักที่ 1

บทนิยาม ให้ A เป็น n  n เมทริกซ์ A เป็นเมทริกซ์เอกฐาน (singular matrix) เมื่อ det(A) = 0 A เป็นเมทริกซ์ไม่เอกฐาน (non - singular matrix) เมื่อ det(A)  0 บทนิยาม ให้ A เป็น n  n เมทริกซ์ เมื่อ n > 2 เมทริกซ์ผูกพัน (adjoint matrix) ของ A คือ เมทริกซ์ [Cij(A)]t เขียนแทนเมทริกซ์ผูกพันของ A ด้วย adj(A)