Probability & Statistics

Slides:



Advertisements
งานนำเสนอที่คล้ายกัน
คณิตศาสตร์ กับ การเชิญแขกมางาน
Advertisements

การสุ่มงาน(Work Sampling)
ลิมิตและความต่อเนื่อง
ความน่าจะเป็น Probability.
Introduction to Probability เอกสารประกอบการเรียนการสอน วิชา ความน่าจะเป็นเบื้องต้น เรื่อง ความน่าจะเป็นเบื้องต้น อ.สุวัฒน์ ศรีโยธี สาขาวิชาคณิตศาสตร์
ความหมายของความสัมพันธ์ (Relation)
Sampling Distribution
สถิติที่ใช้ในการวิจัย
การเลือกตัวอย่าง อ.สมพงษ์ พันธุรัตน์.
Chapter 4: Special Probability Distributions and Densities
Chapter 6: Sampling Distributions
Chapter 2 Probability Distributions and Probability Densities
Chapter 7: Point Estimation
Chapter 3: Expected Value of Random Variable
ฟังก์ชัน (Function).
Probability & Statistics
Review of Ordinary Differential Equations
Simulation Fundamentals of AMCS.
Power Series (2) Fundamentals of AMCS.
สับเซต ( Subset ) นิยาม กำหนดให้ A และ B เป็นเซตใด ๆ เรากล่าวว่า A เป็นสับเซต B ก็ต่อเมื่อ สมาชิกทุกตัวของ A เป็นสมาชิกของ B ใช้สัญลักษณ์
สับเซต ( Subset ) นิยาม กำหนดให้ A และ B เป็นเซตใด ๆ เรากล่าวว่า A เป็นสับเซต B ก็ต่อเมื่อ สมาชิกทุกตัวของ A เป็นสมาชิกของ B ใช้สัญลักษณ์
Bayes’ Theorem Conditional Prob มีหลาย condition A1, A2, A3, …., An
แนวคิด พื้นฐาน ทางสถิติ The Basic Idea of Statistics.
คณะครุศาสตร์อุตสาหกรรม สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
โดย มิสกรรณกา หอมดวงศรี
การแจกแจงความน่าจะเป็นของตัวแปรสุ่ม
Menu Analyze > Correlate
CPE 332 Computer Engineering Mathematics II
CPE 332 Computer Engineering Mathematics II
วิทยาลัยการอาชีพวังไกลกังวล
การแจกแจงปกติ ครูสหรัฐ สีมานนท์.
ครูสหรัฐ สีมานนท์. หัวข้อ การศึกษา 2. การประยุกต์พื้นที่ ภายใต้โค้งปกติ 1. พื้นที่ภายใต้โค้ง ปกติ
นิยาม, ทฤษฎี สับเซตและพาวเวอร์เซต
คุณสมบัติการหารลงตัว
จำนวนเต็มกับการหารลงตัว
ค31211 คณิตศาสตร์สำหรับ คอมพิวเตอร์ 1
อินเวอร์สของความสัมพันธ์
การดำเนินการบนความสัมพันธ์
การวัดการกระจาย (Measures of Dispersion)
การแจกแจงปกติ NORMAL DISTRIBUTION
การแจกแจงปกติ.
2 Random Signals Asst. Prof. Dr. Peerapol Yuvapoositanon, PhD, DIC
การสุ่มตัวอย่างและการแจกแจงกลุ่มตัวอย่าง
ตัวอย่างที่ 2.10 วิธีทำ เหรียญ.
เทคนิคในการวัดความเสี่ยง
Week 11 Basic Programs 2.
การดำเนินการระหว่างเหตุการณ์
ทฤษฎีเบื้องต้นของความน่าจะเป็น
ค32213 คณิตศาสตร์สำหรับคอมพิวเตอร์ อ.วีระ คงกระจ่าง
ความต่อเนื่องของฟังก์ชัน
การทดลองสุ่มและแซมเปิ้ลสเปซ
ค32214 คณิตศาสตร์สำหรับ คอมพิวเตอร์ 4
Confidence Interval Estimation (การประมาณช่วงความเชื่อมั่น)
หน่วยที่ 6 ความน่าจะเป็น โรงเรียนปทุมวิไล จังหวัดปทุมธานี
คณิตศาสตร์พื้นฐาน ค ชั้นมัธยมศึกษาปีที่ 3 โดย ครูชำนาญ ยันต์ทอง
คะแนนมาตรฐาน และ โค้งปกติ
คณิตศาสตร์พื้นฐาน ค ชั้นมัธยมศึกษาปีที่ 3 โดย ครูชำนาญ ยันต์ทอง
ยูเนี่ยนและอินเตอร์เซคชันของเหตุการณ์
คณิตศาสตร์พื้นฐาน ค ชั้นมัธยมศึกษาปีที่ 3 โดย ครูชำนาญ ยันต์ทอง
คณิตศาสตร์พื้นฐาน ค ชั้นมัธยมศึกษาปีที่ 3 โดย ครูชำนาญ ยันต์ทอง
คณิตศาสตร์พื้นฐาน ค ชั้นมัธยมศึกษาปีที่ 3 โดย ครูชำนาญ ยันต์ทอง
การแจกแจงความน่าจะเป็นแบบต่อเนื่องต่าง ๆ
Basic Statistics พีระพงษ์ แพงไพรี.
คณิตศาสตร์พื้นฐาน ค ชั้นมัธยมศึกษาปีที่ 3 โดย ครูชำนาญ ยันต์ทอง
ค31212 คณิตศาสตร์สำหรับ คอมพิวเตอร์ 2
CPE 332 Computer Engineering Mathematics II
Important probability distribution of variable
Chapter 5: Probability distribution of random variable
CPE 332 Computer Engineering Mathematics II
Chapter 5: Probability distribution of random variable
ใบสำเนางานนำเสนอ:

Probability & Statistics 2301520 Fundamentals of AMCS

Probability Theory (ทฤษฎีความน่าจะเป็น) “ความแน่นอนคือความไม่แน่นอน” ทฤษฎีความน่าจะเป็น เป็นการนำคณิตศาสตร์มาใช้ในการอธิบายความไม่แน่นอน Sample Space the set of all outcomes of an experiment Event a subset of of the sample space ตัวอย่าง 1 ผลที่ได้จากการโยนลูกเต๋าหนึ่งลูก (discrete) ตัวอย่าง 2 ช่วงเวลาที่หลอดไฟจะใช้งานได้จนกว่าจะเสีย (continuous) ความแน่นอนคือความไม่แน่นอน -บางวันฝนตกบางวันไม่ตก -เราวัดสิ่งของอย่างเดียวกันสองครั้ง เรามักจะได้คำตอบสองคำตอบที่ต่างกัน เช่นการทดลองอย่างเดียวกัน ทำสองซ้ำ ได้ผลไม่เหมือนกัน

Probability Function ให้ S เป็น Sample space สมมุติว่าเซต B เป็นเซตของสับเซต(หรือ Event)ของ S ที่มีสมบัติต่อไปนี้ ∈B ถ้า A∈B แล้ว Ac∈B ถ้า แล้ว (เรียก B ว่าเป็น sigma algebra ของ S) ฟังก์ชันความน่าจะเป็น P คือฟังก์ชันที่มีโดเมนเป็น B และสอดคล้องกับสมบัติต่อไปนี้ P:B→ [0,1] P(S)=1 ถ้าเหตุการณ์ เป็นเหตุการณ์ไม่เกิดร่วม จะได้ว่า

Probability Function หากมีการทดลองทำซ้ำเพื่อหาผลอะไรสักอย่างเป็นระยะเวลานานๆ P(A) บอกถึงสัดส่วนของเหตุการณ์ A ที่จะเกิดขึ้นเทียบกับผลที่เกิดขึ้นทั้งหมด

Random Variables ตัวแปรสุ่ม (Random Variable) เป็นตัวแปรที่ใช้แทนค่าของเหตุการณ์ที่ เกิดขึ้น โดยต้องมีค่าเป็นตัวเลข (ซึ่งอาจเป็นตัวเลขที่เป็นผลของเหตุการณ์โดยตรง หรือ ผลของเหตุการณ์สามารถแทนความหมายด้วยตัวเลขได้) ตัวอย่าง 1 X เป็นตัวแปรสุ่มที่ใช้แทนหน้าที่เกิดจากการโยนลูกเต๋าหนึ่งลูก ตัวอย่าง 2 X เป็นตัวแปรสุ่มที่ใช้แทนหน้าที่เกิดจากการโยนเหรียญหนึ่งเหรียญ ตัวอย่าง 3 X เป็นตัวแปรสุ่มที่ใช้แทนช่วงเวลาที่หลอดไฟจะใช้งานได้จนกว่าจะ เสีย

Probability Density Function (pdf) ฟังก์ชันความหนาแน่นของความน่าจะเป็น ถ้า X เป็นตัวแปรสุ่ม discrete จะเรียกว่า probability mass function (pmf) ซึ่งหมายถึง p(x) = P(X = x) ถ้า X เป็นตัวแปรสุ่ม continuous pdf คือฟังก์ชัน f(x)≥0 ที่มีสมบัติว่า ตัวอย่างตัวแปรสุ่มจากหน้าที่แล้ว

Cumulative Distribution Function (cdf) ฟังก์ชันการแจกแจงสะสม ถ้า X เป็นตัวแปรสุ่ม discrete และมี p(x) เป็น pdf แล้ว cdf คือ ถ้า X เป็นตัวแปรสุ่ม continuous และมี f(x) เป็น pdf แล้ว ตัวอย่างตัวแปรสุ่มจากหน้าที่แล้ว

Pmf/pdf ที่ใช้บ่อย Bernoulli: ตัวแปรสุ่ม X มีค่าสองค่าคือ 0 (Failure) และ 1(Success) parameter: p (ความน่าจะเป็น P(X=1)) pmf: ตัวอย่าง: ให้ X แทนผลลัพธ์ของการโยนเหรียญ 1 เหรียญ โดย X=1 หมายถึงออก หัว X=0หมายถึงออกก้อย ให้ความน่าจะเป็นของการออกหัวเป็น 1/3ดังนั้น เราจะ ได้ p(1) = , p(0) = , E[X]= , Var(X)=

Pmf/pdf ที่ใช้บ่อย Binomial Distribution ตัวแปรสุ่ม X คือจำนวนของการทดลองที่สำเร็จจากการทำการทดลองซ้ำทั้งหมด n ครั้ง parameters: n จำนวนของการทดลองทำซ้ำทั้งหมด p ความน่าจะเป็นที่การทดลองหนึ่งครั้งสำเร็จ pmf : ตัวอย่าง: สมมุติว่าเราโยนเหรียญ 1 เหรียญทั้งหมด 10 ครั้ง ให้ X แทนจำนวนการ โยนที่ให้ผลลัพธ์เป็น"หัว“ ให้ความน่าจะเป็นของการออกหัวของเหรียญดังกล่าวเป็น 1/3 จงหาความน่าจะเป็นที่จะออกหัว 1) 5 ครั้งพอดี 2)ไม่เกิน 2ครั้ง

Pmf/pdf ที่ใช้บ่อย Geometric Distribution ตัวแปรสุ่ม X คือจำนวนของการทดลองที่ทำซ้ำจนกว่าจะสำเร็จ parameters: p ความน่าจะเป็นที่การทดลองหนึ่งครั้งสำเร็จ pmf : ตัวอย่าง: ให้ X แทนจำนวนการโยนการโยนเหรียญ 1 เหรียญจนกระทั่งได้ผลลัพธ์ เป็น"หัว“ ให้ความน่าจะเป็นของการออกหัวของเหรียญดังกล่าวเป็น 1/3 จงหา ความน่าจะเป็นที่จะต้องโยนทั้งหมด 1) 5 ครั้งพอดี 2)ไม่เกิน 2ครั้ง

Pmf/pdf ที่ใช้บ่อย Hypergeometric Distribution สมมุติว่ามีการทดลองทำซ้ำทั้งหมด N ครั้ง ซึ่งเป็นการทดลองที่สำเร็จ m ครั้ง สุ่มเลือก การทดลอง n การทดลองมาพิจารณา ตัวแปรสุ่ม X คือจำนวนของการทดลองที่สำเร็จ จากตัวอย่างการทดลองที่สุ่มเลือกมานั้น parameters: N จำนวนของการทดลองทำซ้ำทั้งหมด m คือการทดลองที่สำเร็จ n จำนวนของการทดลองที่สุ่มเลือกมา pmf : ตัวอย่าง: ในการโยนเหรียญหนึ่งเหรียญ 10 ครั้ง พบว่าออกหัว 4 ครั้ง สุ่มเลือกตัวอย่างการ โยนมา 5 ครั้ง จงหาความน่าจะเป็นที่จำนวนการโยนได้หัวจากตัวอย่างที่สุ่มเลือกเป็น 1) 5 ครั้งพอดี 2)ไม่เกิน 2ครั้ง

Pmf/pdf ที่ใช้บ่อย Normal Distribution ตัวแปรสุ่ม X นิยมใช้อธิบายปรากฏการณ์หลายอย่างในชีวิตประจำวัน parameters: μ ค่าเฉลี่ย (mean) σ คือค่าเบี่ยงเบนมาตรฐาน (standard deviation) pdf :