งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ

งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ

พื้นที่ผิวและปริมาตรกรวย

งานนำเสนอที่คล้ายกัน


งานนำเสนอเรื่อง: "พื้นที่ผิวและปริมาตรกรวย"— ใบสำเนางานนำเสนอ:

1 พื้นที่ผิวและปริมาตรกรวย
ครูผู้สอน นายสมศักดิ์ วงศ์ตาชม กลุ่มสาระการเรียนรู้คณิตศาสตร์ เรื่อง พื้นที่ผิวและปริมาตรรูปทรงเรขาคณิต ชั้นมัธยมศึกษาปีที่ 3 โรงเรียนบ้านโพนแพง สำนักงานเขตพื้นที่การศึกษาประถมศึกษากาฬสินธุ์ เขต 3

2

3 รูปเรขาคณิตสามมิติที่มีฐานเป็นรูปวงกลม มียอดแหลมที่ไม่อยู่บนระนาบเดียวกัน กับฐาน และเส้นที่ต่อระหว่างจุดยอดและจุดใดๆบนขอบของฐานเป็นส่วนของเส้นตรงเรียกรูปเรขาคณิตสามมิตินี้ว่า กรวย ฐานรูปวงกลม

4 การวาดกรวย ลากส่วนสูง ในแนวดิ่ง หรือ ที่ตั้งฉากกับฐาน เริ่มวาดฐาน ในแนววงรี เริ่มวาดฐาน ในแนววงรี ลากส่วนสูง ในแนวดิ่ง หรือ ที่ตั้งฉากกับฐาน

5 ความสัมพันธ์ r h ตามทฤษฎีบทปีทาโกรัส
ยอด ส่วนสูงเอียง ส่วนสูง h h ฐานรูปวงกลม r รัศมีฐาน r 2 = h2 + r2 กรวยตรง

6 พื้นที่ผิวกรวย

7 2r h r พื้นที่ผิวข้างของกรวย = r

8 พื้นที่ฐานเป็นรูปวงกลม = r2 r
ส่วนของฐาน พื้นที่ฐานเป็นรูปวงกลม = r2 r ส่วนของข้างกรวย พื้นที่ผิวข้างของกรวย = r พื้นที่ผิวของกรวย = พื้นที่ผิวข้างของกรวย + พื้นที่ฐานรูปวงกลม สูตร พื้นที่ผิวของกรวย = r + r2

9 แนวคิด ต้องหา รัศมี และสูงเอียง
ตัวอย่างที่ 1 แท่งไม้รูปร่างเป็นกรวยอันหนึ่งมีเส้นผ่านศูนย์กลางยาว เซนติเมตร ความสูง 8 เซนติเมตร จงหาพื้นที่ผิวกรวยนี้ แนวคิด ต้องหา รัศมี และสูงเอียง กรวยมีรัศมียาว = เส้นผ่านศูนย์กลางหารด้วย 2 วิธีทำ เส้นผ่านศูนย์กลาง กรวยมีรัศมี = 2 12 h =8 = 2 6 = r =6 ให้ ความสูงเอียง เป็น 2 ตามทฤษฎีบทปีทาโกรัส = h2 + r2 2 = 82 + 62 2 = 100

10 = 10 สูตร พื้นที่ผิวของกรวย = + r2 = r ( + r ) 22 แทนค่าสูตร
h =8 r =6 สูตร พื้นที่ผิวของกรวย = r + r2 = r ( r ) 22 แทนค่าสูตร พื้นที่ผิวของกรวย = × 6 × ( ) 7 132 × ( 16 ) = 7 2112 = 7 พื้นที่ผิวของกรวย = 301.71 ตารางเซนติเมตร

11 พื้นที่ผิวข้างของกรวย = 5 22 × 21 × 35 แทนค่า
ตัวอย่างที่ 2 ต้องการทำกรวยจากกระดาษให้มีรัศมีปากกรวยยาว 21 เซนติเมตร ความสูงเอียง 35 เซนติเมตร กรวยนี้ไม่มีฐาน จงหาพื้นที่กระดาษที่จะใช้ทำกรวย r วิธีทำ สูตร พื้นที่ผิวข้างของกรวย = 5 22 × 21 × 35 แทนค่า ได้ พื้นที่ผิวข้างของกรวย = 7 1 22 × 21 × 5 = = 2310 2310 ตารางเซนติเมตร ใช้กระดาษมีพื้นที่

12 ปริมาตรของกรวย ทรงกระบอกมีรัศมีฐานยาว r หน่วย และสูง h หน่วย ทรงกระบอกมีปริมาตร = r2h สร้าง กรวยแต่ละอันมีรัศมียาว r หน่วย ให้เท่ากับรัศมีฐานทรงกระบอก และสูง h หน่วยเท่ากับรัศมีส่วนสูงทรงกระบอก ตวงทราย 3 กรวยใส่ได้เต็มทรงกระบอกพอดี ปริมาตรกรวย = r2h 1 3

13 1 สูตรปริมาตรกรวย = r2h 3 r แทนรัศมีฐานกรวย r h แทนความสูงของกรวย h

14 ตัวอย่างที่ 3 กรวยใส่ขนมมีเส้นผ่านศูนย์กลางของปากกรวยยาว เซนติเมตร สูง 10 เซนติเมตร จงหาความจุของกรวยนี้ ความยาวเส้นผ่านศูนย์กลาง วิธีทำ ใช้รัศมีกรวย = 2 3 = 2 1 สูตร ปริมาตรกรวย =  r2 h 3 1 22 3 = × [ ]2 × 10 แทนค่า ได้ ปริมาตรกรวย × 3 7 2 1 22 3 3 × × × × 10 = 3 7 2 2 11 × 3 × 5 = 7 ปริมาตรกรวย = 35.57 ลูกบาศก์เซนติเมตร

15 ตัวอย่างที่ 4 กรวยใบตองจำนวน 150 ชิ้น ใส่ขนมกล้วยได้ 1,100 ลูกบาศก์เซนติเมตร และกรวยสูง 7 เซนติเมตร จงหาว่าเส้นผ่านศูนย์กลางของฐานกรวยจะยาวเท่าใด วิธีทำ กรวย 150 ชิ้นจุได้ 1,100 ลูกบาศก์เซนติเมตร 22 กรวย 1 ชิ้นจุได้ 1100 150 = ลูกบาศก์เซนติเมตร 3 ให้ r แทนรัศมีของกรวย 1 สูตร ปริมาตรกรวย =  r2 h 3 1 1 22 22 × × r2 × 7 แทนค่า = 3 7 3 1 22 3 = r2 × 3 22

16 r2 1 = r = 1 ได้ ได้ รัศมีกรวยยาว = 1 1 × 2 เส้นผ่านศูนย์กลางยาว = 2 เซนติเมตร =

17 ความยาวเส้นผ่านศูนย์กลาง ใช้รัศมีกรวย = 2 16 = 2 = 8
ตัวอย่างที่ 5 กรวยอันหนึ่งสูงเอียง 17 เซนติเมตร มีเส้นผ่านศูนย์กลางของฐานยาว 16 เซนติเมตร จงหาปริมาตรกรวย วิธีทำ 1 สูตร ปริมาตรกรวย =  r2 h = 17 3 สูง =h ความยาวเส้นผ่านศูนย์กลาง ใช้รัศมีกรวย = r =8 2 16 = 2 = 8 จะต้องหาส่วนสูง ให้สูง = h 2 จากรูป ตามทฤษฎีปีทาโกรัส = h2 + r2 172 h2 + 82 =

18 172 h2 + 82 = 172 - 82 h2 = h2 289 - 64 = 225 = h2 15 = h 1 สูตร ปริมาตรกรวย =  r2 h 3 5 1 × 3.14 × 82 × 15 ปริมาตรกรวย = 3 1 3.14 × 64 × 5 = ปริมาตรกรวย = 1,004.8 ลูกบาศก์เซนติเมตร


ดาวน์โหลด ppt พื้นที่ผิวและปริมาตรกรวย

งานนำเสนอที่คล้ายกัน


Ads by Google