ดาวน์โหลดงานนำเสนอ
งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ
ได้พิมพ์โดยSilvia Díaz ได้เปลี่ยน 5 ปีที่แล้ว
1
Chapter 5: Probability distribution of random variable
การแจกแจงความน่าจะเป็น ของตัวแปรสุ่ม
2
เนื้อหา: ตัวแปรสุ่ม (Random variable)
การแจกแจงความน่าจะเป็นของตัวแปรสุ่ม (Probability distribution of random variable)
3
ตัวแปรสุ่ม (Random Variable)
เป็นการเปลี่ยนสมาชิกในสเปซตัวอย่างให้เป็นเลข จำนวนจริงหรือถ้ากล่าวในเชิง คณิตศาสตร์ตัวแปรสุ่ม คือ ฟังก์ชันที่ map สมาชิกแต่ ละตัวใน Sample space ไปยัง Real number เช่น โยน เหรียญ 1 เหรียญ 2 ครั้ง S = {HH,HT,TH,TT} ให้ X เป็นตัวแปรสุ่มแทนจำนวนครั้งที่เหรียญขึ้นหัว จากการโยนเหรียญดังกล่าว s x R
4
การแจกแจงความน่าจะเป็นของตัวแปรสุ่ม x มีดังนี้
ปริภูมิตัวอย่าง (H,H) (H,T) (T,T) (T,H) ตัวแปรสุ่ม x 2 1 ดังนั้นค่าของตัวแปรสุ่ม x ที่เป็นไปได้ทั้งหมด คือ 0, 1, 2 การแจกแจงความน่าจะเป็นของตัวแปรสุ่ม x มีดังนี้ x 1 2 P(x)
5
ตัวแปรสุ่ม แบ่งเป็น 2 ลักษณะ คือ
1. ตัวแปรสุ่มชนิดไม่ต่อเนื่อง (Discrete random variable) 2. ตัวแปรสุ่มชนิดต่อเนื่อง (Continuous random variable)
6
ตัวแปรสุ่มชนิด ไม่ต่อเนื่อง (Discrete random variable)
เป็นตัวแปรสุ่มที่ค่าที่เป็นไปได้มีจำนวนจำกัดหรือไม่ จำกัดแต่นับได้เช่น ตัวแปรสุ่ม X มีค่าที่เป็นไปได้ = 0, 1, 2 ตัวแปรสุ่ม Y มีค่าที่เป็นไปได้ = 0, 1, 2,…… ตัวแปรสุ่มชนิดต่อเนื่อง (Continuous random variable) คือตัวแปรสุ่มที่มีค่าเป็นไปได้ต่อเนื่องตลอดช่วงที่กำหนดบนเส้นจำนวน เช่น เวลา น้ำหนัก ระยะทาง และเรียกการแจกแจงความน่าจะเป็นของตัวแปรสุ่มต่อเนื่องว่า ความหนาแน่นของความน่าจะเป็น (Probability Density)
7
การแจกแจงความน่าจะเป็นของตัวแปรสุ่ม
การแจกแจงความน่าจะเป็นของตัวแปรสุ่มชนิดไม่ ต่อเนื่อง ที่จะกล่าวในบทนี้คือ - การแจกแจงทวินาม (Binomial Distribution) - การแจกแจงปัวส์ซอง (Poisson Distribution) การแจกแจงความน่าจะเป็นของตัวแปรสุ่มชนิดต่อเนื่อง ที่จะกล่าวในบทนี้คือ - การแจกแจงปกติ (Normal Distribution)
8
การแจกแจงความน่าจะเป็นของตัวแปรสุ่มชนิดไม่ต่อเนื่อง
9
(Binomial Distribution)
การแจกแจงทวินาม (Binomial Distribution)
10
Bernoulli Trial เป็นลักษณะการทดลองเชิงสุ่มครั้งหนึ่งๆ ซึ่งจะมีผลลัพธ์ ที่เป็นไปได้เพียงสองอย่างเท่านั้น หรือมีผลลัพธ์ที่เป็นไป ได้หลายอย่างแต่แบ่งเป็นสองพวก คือ พวกที่สนใจ (Success) และพวกที่ไม่สนใจ (Failure) เช่น - การตรวจหา group เลือด มี group A, B, AB, O ถ้าขณะนั้นต้องการเลือด group B ดังนั้น group B จะเป็น group ที่สนใจ group อื่นๆ เป็นผลลัพธ์ที่เราไม่สนใจ - การทอดลูกเต๋า 1 ลูก 1 ครั้ง ผลลัพธ์ที่เป็นไปได้ 1, 2, 3, 4, 5, 6 เราสนใจแต้ม 3 ผลลัพธ์ปรากฏแต้ม 3 ถือว่า เกิดเหตุการณ์ที่เรา สนใจ (Success) ผลลัพธ์ปรากฏแต้มอื่น ๆ ที่ไม่ใช่แต้ม 3 ถือว่า เกิด เหตุการณ์ที่เราไม่สนใจ (Failure)
11
Binomial Experiment 1. ทำการทดลองแบบ Bernoulli ซ้ำๆ กัน n ครั้ง
2. การทดลองแต่ละครั้งอิสระกัน 3. ความน่าจะเป็นของการเกิดเหตุการณ์ที่เราสนใจในแต่ละครั้งคงที่ เท่ากับ p นั่นคือ P(Success) = p (ในแต่ละครั้งคงที่) และ P(Failure) = q หรือ 1 - p ซึ่ง p+q = 1 โดยที่ p = เหตุการณ์ที่เราสนใจ q = เหตุการณ์ที่เราไม่สนใจ ถ้ากำหนดตัวแปรสุ่ม X โดยให้ X แทน จำนวนครั้งของการเกิดเหตุการณ์ที่เราสนใจ (Success) จากการทำกาทดลอง n ครั้ง X มีค่าที่เป็นไปได้คือ 0, 1, 2, 3, …. , n เรียก X ว่าเป็นตัวแปรสุ่มทวินาม (Binomial Random Variable) และการแจกแจงของตัวแปรสุ่ม X จะเรียกว่า การแจกแจงทวินาม (Binomial Distribution)
12
Definition เมื่อ X เป็นตัวแปรสุ่มทวินาม ฟังก์ชันความน่าจะเป็นของตัวแปรสุ่ม X ถูกกำหนดดังนี้ ซึ่ง n เป็นจำนวนครั้งของการทดลอง p และ q เป็นความน่าจะเป็นของการเกิดเหตุการณ์ที่สนใจ (Success) และไม่สนใจ(Failure)ของการทดลองแต่ละครั้งตามลำดับและ p+q = 1 เขียนแทนสั้น ๆ ได้ว่า X ~ B(n, p)
13
Definition
14
Definition
15
ตัวอย่าง 5.2 โยนเหรียญเที่ยงตรง (โอกาสเกิดขึ้นเท่ากัน) 1 เหรียญ 4 ครั้งให้ x แทนจำนวนครั้งของการเกิดหัวจากการโยนเหรียญ 4 ครั้ง จงหาความน่าจะเป็น ให้ X แทนจำนวนครั้งของการเกิดหัวจากการโยน เหรียญ 4 ครั้ง จงหาความน่าจะเป็น ก. เหรียญขึ้นหัว 2 ครั้ง ข. เหรียญขึ้นหัว 2 ถึง 4 ครั้ง ค. เหรียญขึ้นหัวอย่างมาก 2 ครั้ง ง. เหรียญขึ้นหัวย่างน้อย 2 ครั้ง
16
ตัวอย่าง 5.3 ถ้า 3 ใน 5 ของคนในเมืองหนึ่งมี I.Q สูงกว่า 85
จงหาความน่าจะเป็นที่คน 5 คน ที่เลือกมา อย่างสุ่มนั้น ก. มี I.Q สูงกว่า 85 จำนวน 2 คน ข. มี I.Q สูงกว่า 85 อย่างน้อย 1 คน ค. มี I.Q น้อยกว่าหรือเท่ากับ 85 ทุก คน **** ฝึกปฏิบัติ
17
ตัวอย่าง 5. 4 ทราบว่า 3 ใน 5 ของคนในเมืองหนึ่งมี I
ตัวอย่าง 5.4 ทราบว่า 3 ใน 5 ของคนในเมืองหนึ่งมี I.Q สูงกว่า 85 ถ้าในเมืองนี้มีคน คน อยากทราบว่า ก. เฉลี่ยแล้วในเมืองนี้จะมีคนที่ I.Q สูงกว่า 85 คนกี่คน ข. ค่าความเบี่ยงเบนมาตรฐานของข้อมูลชุดนี้เป็น เท่าใด
18
ตัวอย่าง 5.5 ฝ่ายตรวจสอบคุณภาพ สินค้าของบริษัทหนึ่งใช้วิธีการสุ่ม ตัวอย่างสินค้ามาตรวจสอบกล่องละ 20 ชิ้น ถ้าในกล่องนั้นมีสินค้าชำรุด 20% จงหาค่าเฉลี่ยและค่าความเบี่ยงเบนมาตรฐานของ สินค้าที่ชำรุด **** ฝึกปฏิบัติ
19
(Poisson Distribution)
การแจกแจงปัวส์ซอง (Poisson Distribution)
20
Poisson Distribution การแจกแจงนี้ประยุกต์กับการทดลองที่ตัวแปรสุ่ม แสดงถึงจำนวนครั้งของเหตุการณ์ ที่เกิดขึ้นในช่วงเวลาใดเวลาหนึ่ง พื้นที่ใดพื้นที่หนึ่ง หรือ อาณา - บริเวณใดบริเวณหนึ่ง ที่กำหนดให้ เช่น - จำนวนครั้งของโทรศัพท์ที่เรียกเข้ามายังสำนักงาน แห่งหนึ่งในช่วงเวลา 1 นาที - จำนวนตั๊กแตนต่อพื้นที่ปลูกข้าว 10 ไร่ - จำนวนอุบัติเหตุบนถนนสายหนึ่งในช่วง 1 สัปดาห์ - จำนวนรอยตำหนิบนพรมที่มีความยาว 1200 ฟุต
21
ถ้าให้ X แทนจำนวนครั้งของการเกิดเหตุการณ์ที่สนใจใน ช่วงเวลาที่กำหนดให้ X มีค่าที่เป็นไปได้คือ 0, 1, 2, …… X จะเป็นตัวแปรสุ่มปัวส์ซอง (Poisson Random Variable) ถ้า X เป็นตัวแปรสุ่มปัวส์ซองฟังก์ชันความน่าจะเป็นของตัว แปรสุ่ม X ถูกกำหนด ดังนี้ Definition
23
ตัวอย่าง 5.7 พื้นที่ปลูกข้าวแห่งหนึ่ง พบว่ามีตั๊กแตนโดยเฉลี่ย 5 ตัวต่อไร่
จงหาความน่าจะเป็นที่ ก. จะพบตั๊กแตน 10 ตัวต่อไร่ ข. จะพบตั๊กแตน 3-5 ตัวต่อไร่ ค. จะพบตั๊กแตนอย่างมาก 2 ตัวต่อไร่ ง. จะพบตั๊กแตนอย่างน้อย 2 ตัวต่อไร่
24
การแจกแจงปัวซงประมาณค่าการแจกแจงทวินาม
25
ตัวอย่าง 5.8 ถ้าความน่าจะเป็นที่แต่ละคนจะบอดสีเท่ากับ จงหาความน่าจะเป็นที่สุ่ม คนมา 1000 คน แล้วพบคนที่ตาบอดสีอย่างมาก 2 คน ตัวอย่าง 5.9 สมมติว่าเครื่องจักรผลิตหลอดไฟเครื่องหนึ่งจะผลิตหลอดไฟที่บกพร่อง 0.1% ถ้าสุ่มหลอดไฟมา 3,000 หลอด มาตรวจสอบ จงหาความน่าจะเป็นที่หลอดไฟ ที่ตรวจสอบ ก. ไม่บกพร่องเลย ข. บกพร่อง 2 หลอด หรือน้อยกว่า **** ฝึกปฏิบัติ
26
การแจกแจงความน่าจะเป็นของตัวแปรสุ่มชนิดต่อเนื่อง
27
(Normal Distribution)
การแจกแจงปกติ (Normal Distribution)
28
Normal Distribution or Gaussian Distribution
Definition
29
จากฟังก์ชันความน่าจะเป็น ถ้าทราบค่า และ เราสามารถเขียนโค้งของ การแจกแจงได้ โดยเส้นโค้ง ที่ได้นี้จะเรียกว่า เส้นโค้ง ปกติ (Normal Curve) ซึ่งจะมี ลักษณะเป็นโค้งระฆังคว่ำ (Bell shape) สมมาตรที่ x =
30
การแจกแจงปกติมาตรฐาน (Standard Normal Distribution)
32
จาก ถ้า และ จะเขียนแทนได้ว่า จะเรียก ว่ามีการแจกแจงแบบปกติมาตรฐาน (Standard Normal Distribution) ปกติมักจะใช้ตัวแปรสุ่ม Z แทน ค่ามาตรฐาน
33
f(z) Z -0.5 0.5 การหาพื้นที่ภายใต้โค้งปกติมาตรฐาน ระหว่างค่า z ที่ต้องการจะหาได้โดย อาศัยการอินทิเกรต หรืออาจหาได้ง่ายโดยอาศัย ตารางสำเร็จ ที่ปรากฏในท้ายเล่ม ของหนังสือสถิติทั่ว ๆ ไป
34
Theorem
35
ตัวอย่าง 5.10 ข้อมูล I.Q. ของนักเรียนกลุ่มหนึ่งทราบว่ามีการ แจกแจง N(100,100) สุ่มนักเรียนมา 1 คน จงหา ความน่าจะเป็นที่นักเรียนคนนั้นจะมี I.Q. อยู่ ระหว่าง
36
ตัวอย่าง 5.11 น้ำหนักของคนกลุ่มหนึ่งมีการแจกแจงปกติมี ค่าเฉลี่ย 100 ปอนด์และมีค่าความ เบี่ยงเบนมาตรฐาน 25 ปอนด์ สุ่มคนมา 1 คน จงหา ความน่าจะเป็นที่จะได้คนที่ มีน้ำหนัก ปอนด์ ตัวอย่าง 5.12 ถ้าคะแนนสอบวิชาหลักสถิติมีการแจกแจงปกติโดย มีคะแนนเฉลี่ย 55 คะแนน ส่วนเบี่ยงเบนมาตรฐาน 18 คะแนน ในการสอบ อาจารย์ผู้สอนให้เกรด A แก่นิสิต ที่ได้คะแนนสูงสุด 13.35% ของห้อง นิสิตจะต้องได้ คะแนนอย่างน้อย กี่คะแนน จึงจะได้เกรด A **** ฝึกปฏิบัติ
37
การประมาณค่าความน่าจะเป็นของการแจกแจงแบบทวินามด้วยการแจกแจงแบบปกติ (Normal Approximation to the Binomial Distribution)
38
Theorem
39
ตัวอย่าง 5.13 จากการบันทึกเป็นเวลานานของเจ้าหน้าที่ โรงพยาบาลแห่งหนึ่ง สรุปได้ว่า ในฤดูร้อนของแต่ละปี จะมีผู้มาเข้ารับการรักษาด้วยโรคอหิวาต์ 30% ของ ผู้ป่วยที่มารับ การรักษาทั้งหมด ในช่วงฤดูร้อนนี้มีผู้มารับการรักษา 50 คน จงหาความน่าจะเป็นที่ คนที่มารับการรักษาจะเป็นโรคอหิวาต์ ก. ไม่เกิน 10 คน ข. มากกว่า 10 คน ค. 15 ถึง 20 คน ง. มากกว่า 8 คน แต่ไม่ถึง 10 คน
40
การประมาณค่าความน่าจะเป็นของการแจกแจงแบบปัวส์ซองด้วยการแจกแจงแบบปกติ (Normal Approximation to the Poisson Distribution)
42
ตัวอย่าง 5.14 จากการจดบันทึกของเจ้าหน้าที่โรงพยาบาลแห่งหนึ่ง สรุปว่า ในช่วงเทศกาล โดยเฉลี่ยแล้วจะมีผู้มารับการรักษาที่แผนกฉุกเฉิน 25 คน/คืน ก. จงหาความน่าจะเป็นที่ในช่วงเทศกาลคืนหนึ่งจะ มีผู้มารับการรักษาที่แผนก ฉุกเฉินไม่เกิน 20 คน ข. ในช่วงเทศกาลลอยกระทงมีงาน 2 คืน จงหา ความน่าจะเป็นที่ใน 2 คืน จะมีผู้มารับการรักษาที่แผนกฉุกเฉินมากกว่า 40 คน
งานนำเสนอที่คล้ายกัน
© 2024 SlidePlayer.in.th Inc.
All rights reserved.