ดาวน์โหลดงานนำเสนอ
งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ
ได้พิมพ์โดยNgoen Kitjakarn ได้เปลี่ยน 10 ปีที่แล้ว
1
การควบคุมทางราบ การควบคุมทางราบ ถูกใช้ในงานการเก็บรายละเอียด และการวางผัง วงรอบเป็นรูปแบบที่ใช้หาค่าพิกัดสำหรับการหมุดควบคุม หรือหมุดวงรอบ
2
Grass N (mag) A C D E B
3
หมุดควบคุมทางราบ
4
การควบคุมทางราบ มีสองชนิด : - a) วงรอบปิด POLYGON or LOOP TRAVERSE
b) วงรอบเปิด LINK TRAVERSE A B C D E F B C D E F A G
5
ทั้งสองเป็นแบบปิด closed. a) เป็นแบบปิดแบบเห็นได้ชัดเจน
B C D E F G X Y ทั้งสองเป็นแบบปิด closed. a) เป็นแบบปิดแบบเห็นได้ชัดเจน b) หมุดเริ่มต้นและจบลงที่หมุดเดิม มีค่าพิกัดที่ทราบค่า และจุดเริ่มต้นและจุดสิ้นสุดเป็นจุดที่ทราบค่า และทราบมุมที่วัดได้ การรังวัดหมุด A to B to C etc เป็นมุมธงหน้า (FORWARD DIRECTION) แต่ละหมุดสามารถวัดมุมที่เป็นไปได้ดังนี้ RIGHT HAND ANGLES มุมหน้าขวา LEFT HAND ANGLES มุมหน้าซ้าย
6
ใช้ Theodolite สามารถวัดมุมภายในได้ทั้งหมด
A B C D E F พิจารณาวงรอบปิด (POLYGON ) มุมราบหน้าซ้าย ที่วัดภายในมุมวงรอบปิด ใช้ Theodolite สามารถวัดมุมภายในได้ทั้งหมด Σ (มุมภายใน) = ( 2 N ) * 900 ความต่างระหว่างผลรวมของมุมที่วัด (Σ Measured Angles ) และ ผลรวมของมุมภายในที่คำนวณ (Σ Internal Angles) เป็นค่าความผิดของมุม (or 3) ค่ามุมที่ผิดพลาดสูงสุด = 2 * ความละเอียดของกล้องวัดมุม * (จำนวนมุม) (Rule of thumb)
7
ตั้งกล้องที่หมุด A ส่องไปยัง F - ส่องธงหลัง
ΘAB ΘAF Hence ΘAF is known as a BACK BEARING A B C F ΘBA ΘBC LH angle ABC Angle FAB (LH angle) ตั้งกล้องที่ A ส่องไปยัง B - ส่องธงหน้า Hence ΘAB is known as a FORWARD BEARING BACK BEARING (ΘAF ) L.H.ANGLE (<FAB) = NEXT FORWARD BEARING (ΘAB) Reminder: every line has two bearings ΘBA = ΘAB 1800 FORWARD BEARING ( ) BACK BEARING (
8
Observed Clockwise Horizontal Angle
Traverse Example 12” / 4 = 3” Observations, using a Zeiss O15B, 6” Theodolite, were taken in the field for an anti - clockwise polygon traverse, A, B, C, D. Traverse Station Observed Clockwise Horizontal Angle ‘ “ C N B A - 3” A B C D D Σ (Internal Angles) = Line Horizontal Distance Σ (Internal Angles) should be (2N-4)*90 = Allowable = 3 * 6” * N= 36” AB 638.57 OK - Therefore distribute error BC The bearing of line AB is to be assumed to be 00 and the co-ordinates of station A are ( mE ; mN) CD DA
9
LINE BACK BEARING STATION ADJUSTED LEFT HAND ANGLE FORWARD BEARING WHOLE CIRCLE q HORIZONTAL DISTANCE D + = + = Use Distance and Bearing to go from POLAR to RECTANGULAR to get Delta E and Delta N values. Check 1 AD A +or- 1800 638.57 AB BA B C D +or- 1800 BC CB CD DC DA +or- 1800 AD
10
WHOLE CO-ORDINATE DIFFERENCES HORIZONTAL CIRCLE DISTANCE CALCULATED BEARING q D D E D N 638.57 0.000 G -0.094 -0.654
11
=+931.227m =+638.570m =-3677.764m =+2107.313m D EBC D NCD D NBC D ECD
NAB = m = m A D NDA D EDA = m D
12
e is the LINEAR MISCLOSURE
e = (eE2 + eN2 ) B eE A eN e A’ D
13
Fractional Linear Misclosure (FLM) = 1 in G D / e
WHOLE CO-ORDINATE DIFFERENCES HORIZONTAL CIRCLE DISTANCE CALCULATED BEARING q D D E D N 638.57 0.000 G G -0.094 -0.654 eE eN e = (eE2 + eN2) = ( ) = 0.661m Fractional Linear Misclosure (FLM) = 1 in G D / e = 1 in ( / 0.661) = 1 in 13500 [To the nearest 500 lower value]
14
Acceptable FLM values :-
1 in for most engineering surveys 1 in for control for large projects 1 in for major works and monitoring for structural deformation etc.
15
Fractional Linear Misclosure (FLM) = 1 in G D / e
WHOLE CO-ORDINATE DIFFERENCES HORIZONTAL CIRCLE DISTANCE CALCULATED BEARING q D D E D N 638.57 0.000 G G -0.094 -0.654 eE eN e = (eE2 + eN2) = ( ) = 0.661m Fractional Linear Misclosure (FLM) = 1 in G D / e = 1 in ( / 0.661) = 1 in 13500 Check 2 If not acceptable ie 1 in 3500 then we have an error in fieldwork
16
If the misclosure is acceptable then distribute it by: -
a) Bowditch Method - proportional to line distances b) Transit Method - proportional to D N values E and c) Numerous other methods including Least Squares Adjustments
17
Bowditch and transit methods to be covered next
งานนำเสนอที่คล้ายกัน
© 2024 SlidePlayer.in.th Inc.
All rights reserved.