F = C - P + 2 Free Energy and Phase Equilibria The Phase Rule C = จำนวน components P = จำนวน สถานะ (phase) f = จำนวนตัวแปรอิสระ (degree of freedom)
H2O c P a 1 atm b S L V 0.0006 atm T Triple point 273.16 K 373.15 K T
c b a d S L V P T Degree of freedom ? T a: C=1, P=2, f = 1-2+2 =1 How about T ? c: C=1, P=1, f = 1-1+2 =2
C Phase diagram for Sulfur (S) P liquid F A E vapor B T ฎ orthorhombic monoclinic 1 atm A E vapor B T ฎ
B (368.55 K) : Srhombic Smono Svapor C P F vapor A E B B T ฎ orthorhombic liquid F monoclinic vapor A E B B T ฎ
E (392.15 K) : Smono Sliq Svapor C P F vapor A E E B T ฎ orthorhombic liquid F monoclinic vapor A E E B T ฎ
C (424 K) : Srhombic Smono Sliq C C P F vapor A E B orthorhombic liquid F monoclinic vapor A E B
Gl = Gv Liquid Vapor Equilibria นั่นคือ ดังนั้น DG = 0 มีสมดุลระหว่างเฟส liq กับ vapor ดังนั้น DG = 0 Gl = Gv นั่นคือ
Gl + dGl = Gv + dGv dGl = dGv ถ้าอุณหภูมิและความดันเปลี่ยนแปลง แต่ยังเกิดสมดุลตลอดเวลา จะได้ Gl + dGl = Gv + dGv dGl = dGv
Vl dP - Sl dT = Vv dP - Sv dT (Vl - Vv )dP = (Sl - Sv ) dT แทนค่า dG = VdP - SdT Vl dP - Sl dT = Vv dP - Sv dT (Vl - Vv )dP = (Sl - Sv ) dT
dP = (Sl - Sv ) dT (Vl - Vv ) V ฎ l dP = (Sv - Sl ) dT (Vv - Vl ) l ฎ V Vaporization
dP = DSvap dT DVvap dP = DHvap dT TDVvap ที่สมดุล : DG = 0 = DHvap - TDSvap dP = DHvap dT TDVvap
dP = DHvap dT TDVvap Dvvap = Vv = RT P Vv >> Vl
สำหรับกระบวนการการกลายเป็นไอ (Vaporization) dP = DHvap P dT RT2
dP = DHvap P dT RT2 P1 P2 T1 T2
ln P2 = DHvap (T2 - T1) P1 T1T2 ln P2 - ln P1 = DHvap - DHvap RT2 RT1 หรือ ln P2 - ln P1 = DHvap - DHvap RT1 RT2
ln P = - DH + constant RT log P = - DH + constant 2.303RT เขียนเป็นสมการทั่วไปได้ดังนี้ ln P = - DH + constant RT log P = - DH + constant 2.303RT
Plot ln P & 1/T ln P Slope = - DHvap R 1/T
Vl < Vs Vl > Vs Liquid - Solid Equilibria dP = DHfus dT TDVfus กรณีของน้ำ: Vl < Vs DVfus < 0 กรณี CO2: Vl > Vs DVfus > 0
P S L V T
Solid - Vapor Equilibria dP = DHsub dT TDVsub Vg > Vs DVsub > 0
P S L V Slope เป็นบวกเสมอ T