งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ

งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ

Computational Fluid Dynamics

งานนำเสนอที่คล้ายกัน


งานนำเสนอเรื่อง: "Computational Fluid Dynamics"— ใบสำเนางานนำเสนอ:

1 Computational Fluid Dynamics
Colorful Fluid Dynamics ผศ.ดร. ยศธนา คุณาทร ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่ 1/2550

2 Antiquity Focus on waterworks: aqueducts, canals, harbors, bathhouses.
One key figure was Archimedes - Greece ( BC). He initiated the fields of static mechanics, hydrostatics, and pycnometry (how to measure densities and volumes of objects). One of Archimedes’ inventions is the water screw, which can be used to lift and transport water and granular materials.

3 Leonardo da Vinci - Italy (1452-1519)
Leonardo set out to observe all natural phenomena in the visible world, recognizing their form and structure, and describing them pictorially exactly as they are. He planned and supervised canal and harbor works over a large part of middle Italy. In France he designed a canal that connected the Loire and Saone. His contributions to fluid mechanics are presented in a nine part treatise (Del moto e misura dell’acqua) that covers the water surface, movement of water, water waves, eddies, falling water, free jets, interference of waves, and many other newly observed phenomena.

4 Isaac Newton - England (1643-1727)
One of the most important figures in science. Most well known for his three laws of motion. His key contributions to fluid mechanics include: The second law: F=m.a. The concept of Newtonian viscosity in which stress and the rate of strain vary linearly. The reciprocity principle: the force applied upon a stationary object by a moving fluid is equal to the change in momentum of the fluid as it deflects around the front of the object. Relationship between the speed of waves at a liquid surface and the wavelength.

5 18th and 19th century During this period, significant work was done trying to mathematically describe the motion of fluids. Daniel Bernoulli ( ) derived Bernoulli’s equation. Leonhard Euler ( ) proposed the Euler equations, which describe conservation of momentum for an inviscid fluid, and conservation of mass. He also proposed the velocity potential theory. Claude Louis Marie Henry Navier ( ) and George Gabriel Stokes ( ) introduced viscous transport into the Euler equations, which resulted in the Navier-Stokes equation. This forms the basis of modern day CFD. Other key figures were Jean Le Rond d’Alembert, Siméon-Denis Poisson, Joseph Louis Lagrange, Jean Louis Marie Poiseuille, John William Rayleigh, M. Maurice Couette, and Pierre Simon de Laplace. - Couette: viscometer with annular rotating cylinders. Turbulence transition. - d’Alembert paradox: in steady inviscid irrotational (potential) flow the force on an object is zero. Prandtl resolved this paradox by showing that flow away from an object may be inviscid, but that there is a viscous BL. - Poiseuille: laminar flows, blood flows. Invented the U-shaped mercury manometer for blood pressure measurements. As a result blood pressure is still expressed in mm Hg. - Rayleigh studied flow instabilities, also as they arise from natural convection. The Rayleigh number will be discussed in a later lecture on heat transfer. -Potential flow theory: v = grad f with f the velocity potential (a scalar). For steady-state, inviscid flow with no rotation: rot v = 0.

6 First part of the 20th century
Much work was done on refining theories of boundary layers and turbulence. Ludwig Prandtl ( ): boundary layer theory, the mixing length concept, compressible flows, the Prandtl number, and more. Theodore von Karman ( ) analyzed what is now known as the von Karman vortex street. Geoffrey Ingram Taylor ( ): statistical theory of turbulence and the Taylor microscale. Andrey Nikolaevich Kolmogorov ( ): the Kolmogorov scales and the universal energy spectrum. George Keith Batchelor ( ): contributions to the theory of homogeneous turbulence. There are two Prandtl numbers: - mass transfer - ratio between viscosity and diffusion coefficient - convection flows: Cp*mu/k gives the ratio between momentum diffusivity and thermal diffusivity. For natural convection flows and temperature dependent compressible flows it is important to either use constants for all of these properties or make all of them T-dependent. Otherwise the Prandtl number would exhibit unphysical variations which could lead to incorrect flow predictions.

7 History Earliest “CFD” work by L.F. Richardson (1910)
Used human computers Iterative solutions of Laplace’s eqn using finite-difference methods, flow over cylinder etc. Error estimates, extrapolation to zero error “So far I have paid piece rates for the operation (Laplacian) of about n/18 pence per coordinate point, n being the number of digits … one of the quickest boys averaged 2000 operations (Laplacian) per week for numbers of 3 digits, those done wrong being discounted …” Richardson, 1910 Lewis F. Richardson ( ) Also researched mathematical models for causes of war : Generalized Foreign Politics (1939) Arms and Insecurity(1949) Statistics of Deadly Quarrels (1950)

8 History Relaxation methods (1920’s-50’s)
Landmark paper by Courant, Friedrichs and Lewy for hyperbolic equations (1928) Von Neumann stability criteria for parabolic problems (1950) Harlow and Fromm (1963) computed unsteady vortex street using a digital computer. They published a Scientific American article (1965) which ignited interest in modern CFD and the idea of computer experiments Boundary-layer codes developed in the ’s (GENMIX by Patankar and Spalding in 1972 for eg.) Solution techniques for incompressible flows published through the 1970’s (SIMPLE family of algorithms by Patankar and Spalding for eg.) Jameson computed Euler flow over complete aircraft (1981) Unstructured mesh methods developed in 1990’s John von Neumann ( ) Richard Courant ( )

9 1960s and 1970s During the 1960s the theoretical division at Los Alamos contributed many numerical methods that are still in use today, such as the following methods: Particle-In-Cell (PIC). Marker-and-Cell (MAC). Vorticity-Streamfunction Methods. Arbitrary Lagrangian-Eulerian (ALE). k- turbulence model. During the 1970s a group working under D. Brian Spalding, at Imperial College, London, develop: Parabolic flow codes (GENMIX). Vorticity-Streamfunction based codes. The SIMPLE algorithm and the TEACH code. The form of the k- equations that are used today. Upwind differencing. ‘Eddy break-up’ and ‘presumed pdf’ combustion models. In 1980 Suhas V. Patankar publishes Numerical Heat Transfer and Fluid Flow, probably the most influential book on CFD to date.

10 1980s and 1990s Previously, CFD was performed using academic, research and in-house codes. When one wanted to perform a CFD calculation, one had to write a program. This is the period during which most commercial CFD codes originated that are available today: Fluent (UK and US). CFX (UK and Canada). Fidap (US). Polyflow (Belgium). Phoenix (UK). Star CD (UK). Flow 3d (US). ESI/CFDRC (US). SCRYU (Japan). and more, see

11 CFD คืออะไร CFD เป็น วิธี/เครื่องมือ ทำนายการไหลของของไหล รวมไปถึงการถ่ายเทความร้อน และ ปรากฏการณ์อื่น ๆ เช่น การถ่ายเทมวล (Mass Transfer) การเปลี่ยนสถานะ (Phase Change) ปฏิกิริยาเคมี (Chemical Reaction) การเคลื่อนที่เชิงกล (Mechanical Movement) อื่น ๆ ด้วยการแก้สมการคณิตศาสตร์ที่อธิบายปรากฏการณ์ที่เกี่ยวข้องด้วยวิธีการเชิงตัวเลข

12 การแก้ปัญหาทางด้านพลศาสตร์ของไหล
การทดลอง (Experimental) 17th Century ทฤษฎี (Theoretical) 18th- 19th Century CFD 20th Century- ปัจจุบัน CFD ไม่ได้เข้าแทนที่ทฤษฎีหรือการทดลอง หากแต่เป็นการเสริมสร้างความเข้าใจ และยืนยันผลที่ได้จากทฤษฎีและการทดลอง (หรือในทางกลับกัน)

13 Motivation Huge variety of industrial flows: Rotating machinery
Compressible/incompressible aerodynamics Manifolds, piping Extrusion, mixing Reacting flows, combustion …. Impossible to solve Navier-Stokes equations analytically for these applications!

14 การประยุกต์ใช้ CFD Aerodynamics Aerothermodynamcis Escape Systems
Flow Control Aerodynamics Missile Aerodynamics Aircraft Aerodynamics Aeroelasticity Store Separation Rotorcraft Aerodynamics

15 การประยุกต์ใช้ CFD Automotive Underhood Cooling Torque Converter
Hydraulic Thrust External Aerodynamics

16 การประยุกต์ใช้ CFD Biomedical Clot Trapping Glucose/Blood Gas Sensor
LV Simulation Biomedical Artherosclerosis Modeling TCPC Connection

17 การประยุกต์ใช้ CFD Turbo Machinery Combustion Medicine Fuel Cell
Propulsion Plasma

18 หลักการของ CFD คือการสร้างแบบจำลองการไหลของของไหล ด้วยการใช้วิธีการเชิงตัวเลขมาคำนวณสมการควบคุมการไหล ที่อยู่ในรูปของสมการอนุพันธ์ย่อย (PDEs) ซึ่งโดยทั่วไปจะประกอบไปด้วย สมการภาวะต่อเนื่อง (Continuity Equation) สมการโมเมนตัม (Momentum Equation ) สมการพลังงาน (Energy Equation) สมการสภาวะ (Equation of State)

19 การใช้ CFDRC ในการแก้ปัญหาด้วย CFD โดยทั่วไปแบ่งออกเป็น 3 ขั้นตอน
Pre-process -การสร้างแบบจำลอง (Geometry Modelling) -การสร้างกริด (Grid Generation) -การกำหนดสภาวะขอบเขต (B.C. Setup) -การกำหนดคุณสมบัติของของไหล และวัตถุภายในแบบจำลอง (Fluid and Material Properties Setup) CFD-GEOM CFD-ACEU CFD-FASTRAN CFD-MAXWELL Process -กำหนดวิธีในการแก้ปัญหา (Select Algorithm) -กำหนดตัวแปรของวิธีการแก้ปัญหา (Parameter Setup) -หาคำตอบ (Solve the problem) Post-process -นำผลลัพธ์ที่ได้มาแสดงผล หรือคำนวณต่อไปเพื่อหาค่าตัวแปรอื่นๆที่ต้องการ CFD-VIEW

20 Geometrical Modeling Structure
Geometry Mesh Points Trimming Loops Unstructured Domain Line, Polyline, Arc Edges Connect, Extrude, Revolve Unstructured Grid Plane, Surface Faces 2-D Blocks Block, Volume 3-D Blocks

21 Assignment #0 - ทบทวนความรู้พื้นฐาน วิชากลศาสตร์ของไหล
- ทบทวนความรู้พื้นฐาน เกี่ยวกับสมการ PDE - ทบทวนความรู้ด้านการเขียน CAD


ดาวน์โหลด ppt Computational Fluid Dynamics

งานนำเสนอที่คล้ายกัน


Ads by Google