ดาวน์โหลดงานนำเสนอ
งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ
ได้พิมพ์โดยChakri Aromdee ได้เปลี่ยน 10 ปีที่แล้ว
1
ADG SOV df SS MS F Trt ** Error Total Duncan’s Number of Means (p) LSR LSR LSD LSD.05 = LSD.01 =
2
LSD Duncan LSR = SSR * SE XA – XB t = 2 S2/n
LSD = t, df of error 2 S2/n LSD = 2 * t, df of error S2/n Duncan LSR = SSR * SE
3
FCR SOV df SS MS F Trt ** Error Total Duncan’s Number of Means (p) LSR LSR LSD LSD.05 = .094 LSD.01 = .129
4
ตารางแสดงผลของอาหาร 4 สูตรต่อ ADG และ FCR ของสุกร
สูตรอาหาร %CV ADG (kg/d) 0.892a 0.988bc 1.000b 0.952c FCR a 2.028b 2.002b 2.100b ในแถวเดียวกัน ตัวอักษรเหมือนกัน ไม่มีความแตกต่างกันทางสถิติที่ระดับความคลาดเคลื่อน 5 %
5
แผนการทดลองแบบสุ่มสมบูรณ์
CRD; Completely Randomized Design แผนการทดลองแบบสุ่มสมบูรณ์ ใช้กับการเปรียบเทียบตั้งแต่ 2 ทรีทเมนต์ขึ้นไป หน่วยทดลอง/วัตถุทดลอง/สัตว์ทดลองมีความสม่ำเสมอกัน จัดทรีทเมนต์ให้กับหน่วยทดลองอย่างสุ่ม
6
การจัดผังการทดลอง (4 Treatments, 5 replications)
CRD; Completely Randomized Design การจัดผังการทดลอง (4 Treatments, 5 replications) T4R2 T2R5 T1R4 T3R3 T1R1 T2R1 T3R1 T4R1 T1R1 T3R1 T2R1 T4R3 T1R2 T2R2 T3R2 T4R2 T2R2 T1R3 T3R5 T1R5 T1R3 T2R3 T3R3 T4R3 T4R5 T3R4 T1R2 T2R4 T1R4 T2R4 T3R4 T4R4 T3R2 T4R4 T2R3 T4R1 T1R5 T2R5 T3R5 T4R5
7
แผนการทดลองแบบสุ่มสมบูรณ์ภายในบล็อค
RCBD; Randomized Complete Block Design แผนการทดลองแบบสุ่มสมบูรณ์ภายในบล็อค ใช้กับการเปรียบเทียบตั้งแต่ 2 ทรีทเมนต์ขึ้นไป หน่วยทดลอง/สัตว์ทดลอง สามารถแยกปัจจัยผันแปรได้ 1 อย่าง ที่สามารถจัดเป็นบล็อคได้ก่อนการให้ทรีทเมนต์ หน่วยทดลอง/สัตว์ทดลองต้องมีความสม่ำเสมอภายในบล็อค จัดทรีทเมนต์ให้กับหน่วยทดลองอย่างสุ่มภายในแต่ละบล็อค
8
การจัดผังการทดลอง (4 Treatments, 5 Blocks)
RCBD; Randomized Complete Block Design การจัดผังการทดลอง (4 Treatments, 5 Blocks) Block 1 T4 T2 T1 T3 T1 T2 T4 T3 2 T4 T1 T3 T2 T4 T1 T2 T3 3 T2 T1 T2 T4 T4 T3 T1 T3 4 T4 T3 T1 T2 T1 T2 T3 T4 5 T3 T1 T2 T4 T1 T2 T3 T4
9
แผนการทดลองแบบจตุรัสลาติน (บล็อค 2 ครั้ง)
LS; Latin Square Design แผนการทดลองแบบจตุรัสลาติน (บล็อค 2 ครั้ง) นิยมใช้กับการเปรียบเทียบตั้งแต่ 3 ทรีทเมนต์ ขึ้นไป หน่วยทดลอง/สัตว์ทดลอง สามารถแยกปัจจัยผันแปรที่ อาจมีผลต่อค่าสังเกตได้ 2 ปัจจัย เรียกปัจจัยหนึ่งว่าเป็นอิทธิพลเนื่องจากแถว (row) ส่วนอีกปัจจัยเรียกว่าอิทธิพลเนื่องจากคอลัมน์ (column) จำนวน Treatment = Row = Column
10
การจัดผังการทดลอง (4 x 4 LS)
LS; Latin Square Design การจัดผังการทดลอง (4 x 4 LS) 4 T4 T1 T2 T3 2 T2 T3 T4 T1 Columns T1 T2 T3 T4 Rows 1 3 1 T1 T3 T4 T2 T3 T2 T4 T1 2 T2 T3 T4 T1 3 1 4 2 3 T3 T4 T1 T2 4 T2 T4 T3 T1 4 T4 T1 T2 T3 2 T4 T2 T1 T3 T3 T1 1 T4 T2 cycle สุ่ม row สุ่ม column 3 T1 T3 T2 T4
11
Xijk = µ + Ti + Rj + Ck + ijk
Mathematical model Xir = µ + Ti + ir CRD: Xijr = µ + Ti + Bj + ijr RCBD: Xijk = µ + Ti + Rj + Ck + ijk LS: CRD RCBD LS Error = Block + Error = Row + Column + Error
12
SOV df SOV df SOV df Trt 3 Trt 3 Trt 3 Error 12 Block 3 Rows 3
CRD RCBD LS SOV df SOV df SOV df Trt 3 Trt 3 Trt Error 12 Block 3 Rows Error 9 Columns 3 Error Total
13
Ti2 – CF ri Xij2 – CF CRD SOV df SS MS F Trt t-1 St2
Error t(r-1) SST – SSTrt S2 Total tr-1 Ti2 ri – CF St2 S2 Xij2 – CF CF = (xij)2 N
14
Ti2 – CF b Bj2 – CF t Xij2 – CF RCBD SOV df SS MS F Trt t-1 St2
Block b-1 Error (t-1)(b-1) SST - อื่นๆ S2 Total tb-1 Ti2 b – CF St2 S2 Bj2 t – CF Xij2 – CF CF = (xij)2 N
15
A B C D block1 block2 block3 block4
16
Ti2 – CF t Rj2 – CF t Ck2 – CF t Xij2 – CF LS SOV df SS MS F
Trt t St2 Rows t-1 Columns t-1 Error (t-1)(t-2) SST - อื่นๆ S2 Total t2-1 Ti2 t – CF St2 S2 Rj2 t – CF Ck2 t – CF Xij2 – CF CF = (xij)2 N
17
ต้องการทราบว่าไก่เนื้อ 4 สายพันธุ์ สายพันธุ์ใดมี ADG สูงสุด โดยใช้ไก่ในการทดลองจำนวน 80 ตัว ที่มีอายุเท่ากัน เพศเดียวกัน มาจากฝูงเดียวกัน แต่น้ำหนักตัวแตกต่างกัน ควรวางแผนการทดลองแบบใด? ต้องการทราบว่าไก่เนื้อ 4 สายพันธุ์ สายพันธุ์ใดมี ADG สูงสุด โดยใช้ไก่ในการทดลองจำนวน 80 ตัว ที่มีเพศเดียวกัน มาจากฝูงเดียวกัน แต่น้ำหนักตัวและอายุแตกต่างกัน ควรวางแผนการทดลองแบบใด? ต้องการทราบว่าไก่เนื้อ 4 สายพันธุ์ สายพันธุ์ใดมี ADG สูงสุด โดยใช้ไก่ในการทดลองจำนวน 80 ตัว ที่มีอายุเท่ากัน เพศเดียวกัน มาจาก 4 ฝูง และน้ำหนักตัวในแต่ละฝูงแตกต่างกันโดยสามารถแบ่งได้ 4 กลุ่ม ควรวางแผนการทดลองแบบใด?
18
Orthogonal comparison
Orthogonal contrast (class comparisons) เมื่อจุดประสงค์ของการทดลองต้องการเปรียบเทียบเป็นกลุ่ม เช่น กลุ่มยาที่ใช้สมุนไพร กับ กลุ่มที่ใช้ยาปฏิชีวนะ วางแผนการเปรียบเทียบล่วงหน้าได้ Orthogonal polynomial (trend comparisons) เมื่อต้องการตรวจสอบแนวโน้มการตอบสนองของตัวแปรต่อการเพิ่มหรือลดทรีทเมนต์
19
จากการเปรียบเทียบการป้องกันโรคท้องร่วงในลูกสุกร โดยใช้ยาสมุนไพร และ yogurt วางแผนการทดลอง CRD และมี 4 ซ้ำ T1 = ไม่เติมยาป้องกันท้องร่วง T2 = เติมฟ้าทะลายโจร T3 = เติมสารสกัดจากใบพลู T4 = เติม yogurt จุดประสงค์ การใช้ยาป้องกันโรคท้องร่วงในอาหารสามารถป้องกันโรคได้หรือไม่? การใช้ยาสมุนไพรป้องกันโรคท้องร่วงได้ดีกว่าการใช้ yogurt หรือไม่? ถ้าหากต้องการใช้ยาสมุนไพรควรเลือกใช้ชนิดใด?
20
จุดประสงค์ การใช้สารป้องกันโรคท้องร่วงในอาหารสามารถรักษาโรคท้องร่วงได้หรือไม่? การใช้ยาสมุนไพรป้องกันโรคท้องร่วงดีกว่าการใช้ yogurt หรือไม่? ถ้าหากต้องการใช้ยาสมุนไพรควรเลือกใช้ชนิดใด? Contrast 1 (L1): HO: µ1 = 1/3 (µ2 + µ3 + µ4) HA: µ1 1/3 (µ2 + µ3 + µ4) Contrast 2 (L2): HO: µ4 = 1/2 (µ2 + µ3) HA: µ4 1/2 (µ2 + µ3) Contrast 3 (L3): HO: µ2 = µ3 HA: µ2 µ3
21
Contrast 1 (L1): HO: µ1 = 1/3 (µ2 + µ3 + µ4) HA: µ1 1/3 (µ2 + µ3 + µ4) Contrast 2 (L2): HO: µ4 = 1/2 (µ2 + µ3) HA: µ4 1/2 (µ2 + µ3) Contrast 3 (L3): HO: µ2 = µ3 HA: µ2 µ3 ตารางค่าสัมประสิทธิ์ของการเปรียบเทียบ (contrast coefficient) T1 T2 T3 T4 L1 L2 L3 จุดประสงค์ (contrast)
22
T1 T2 T3 T4 T5 T6 T7 วิธีหาค่าสัมประสิทธิ์ แดง vs. เขียว ? ? ? ? ? ? ?
หา ค.ร.น ของจำนวนสมาชิกของกลุ่มเปรียบเทียบ ค.ร.น หารด้วยจำนวนสมาชิกของแต่ละกลุ่ม = ค่าสัมประสิทธิ์ ให้กลุ่มหนึ่งเป็น – อีกกลุ่มเป็น + ทรีทเมนต์ที่ไม่เกี่ยวข้องให้ค่าสัมประสิทธิ์ = 0
23
ข้อกำหนดของค่าสัมประสิทธิ์การเปรียบเทียบ
ผลรวมของผลคูณของสัมประสิทธิ์ของสมาชิกที่เกี่ยวข้องในการเปรียบเทียบ = 0; Ci = 0 C1C2 = 0 เช่น L1L2 = (-3)*(0) + (+1)*(-1) + (+1)*(-1) + (+1)*(+2) = 0 จุดประสงค์/การเปรียบเทียบ/contrast ต้องเป็นอิสระต่อกัน (orthogonal) จำนวนการเปรียบเทียบจึงมีได้ไม่เกิน df ของทรีทเมนต์ ตัวอย่าง กรณีที่ไม่เป็นอิสระ L1: T1 vs (T2+T3+T4) L2: T2 vs. (T1 + T3) L1 L2 = (-3) (-2) (+1) = -4
24
ANOVA; CRD SOV df SS MS F Trt SSTrt L1: T1 vs. (T2+T3+T4) 1 SS(L1) S12 S12 /S2 L2: T4 vs. (T2+T3) SS(L2) S22 S22 /S2 L3: T2 vs. T3 1 SS(L3) S32 S32 /S2 Error SSE S2 Total SST การสรุปผลและแปลความหมายให้ดูค่าเฉลี่ยประกอบกับผลจาก ANOVA
25
ค่าสัมประสิทธิ์ของ Trti
การคำนวณหา Sum of square (SS) Total SS, Treatment SS, Error SS คำนวณเหมือน CRD SS (Li) = ผลรวมของ Treatmenti ( Ti * Ci)2 ri Ci2 ค่าสัมประสิทธิ์ของ Trti จำนวนซ้ำของ Trti
26
ตัวอย่าง: จากการเปรียบเทียบการป้องกันโรคท้องร่วงในลูกสุกร โดยใช้ยาสมุนไพร และ yogurt โดยใช้ลูกสุกร 32 ครอกที่สม่ำเสมอกัน วางแผนการทดลองแบบ CRD และมี 4 ซ้ำ T1 = ไม่เติมยาป้องกันท้องร่วง T2 = เติมฟ้าทะลายโจร T3 = เติมสารสกัดจากใบพลู T4 = เติม yogurt เปอร์เซ็นต์การเกิดท้องร่วงเฉลี่ยของลูกสุกร T1 T2 T3 T4
27
((50*-3)+ (35*+1) + (38*+1) + (26*+1))2
T1 T2 T3 T4 Total Mean ค่าสัมประสิทธิ์ L1 L2 L3 ( Ti * Ci)2 ri Ci2 ((50*-3)+ (35*+1) + (38*+1) + (26*+1))2 4 ( ) SS (L1) = = =
28
ANOVA SOV df SS MS F Trt L1: T1 vs. (T2+T3+T4) ** L2: T4 vs. (T2+T3) ** L3: T2 vs. T ns Error Total F.05, 1, 12 = 4.75 F.01, 1, 12 = 9.33
29
สรุปผลการทดลอง: การใช้ยาสามารถป้องกันการเกิดท้องร่วงในลูกสุกรได้ โดย yogurt สามารถป้องกันท้องร่วงได้ดีกว่ายาสมุนไพร อย่างไรก็ตาม ถ้าหากต้องการใช้ยาสมุนไพรสามารถใช้ได้ทั้งฟ้าทะลายโจรและสารสกัดจากใบพลู
งานนำเสนอที่คล้ายกัน
© 2024 SlidePlayer.in.th Inc.
All rights reserved.