งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ

งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ

An Improved Triangle Box Counting Method for Fractal Dimension Estimation Hemmarat Wachirahatthapong.

งานนำเสนอที่คล้ายกัน


งานนำเสนอเรื่อง: "An Improved Triangle Box Counting Method for Fractal Dimension Estimation Hemmarat Wachirahatthapong."— ใบสำเนางานนำเสนอ:

1 An Improved Triangle Box Counting Method for Fractal Dimension Estimation Hemmarat Wachirahatthapong

2 Example 1 : DBC method My PaperPaper [1] Paper [2] Paper [3] Paper [4] ความหมา ย MxM MXM Image Size sxs Grid Size or Block size

3 Differential Box Counting (DBC) Gray-scale Image Representation

4 Differential Box Counting (DBC) : Step 1 Step 1 : Partition image I into grid size Given a square image I of MxM Pixel. The image is partitioned into grids of size sxs Each grid blocks there is a column of boxes of size sxsxh where h is the height of each boxes where h = s x G/M, and G is the total number of gray level (G=256 of 8 bits gray level)

5 Differential Box Counting (DBC) : Step 2 Step 2 : Calculate ns of each (i,j)th grid On each boxes there are the maximum and the minimum gray values in the (i,j)th grid fall in box number l and k respectively. To calculate value of n s (i,j) = l – k + 1 l representing the maximum of gray level k representing the minimum of gray level

6 Differential Box Counting (DBC) : Step 3 Step 3 : Calculate total box count N s is representing the sum of box count on n s (i,j)th boxes, to calculate of N s Calculate on step 1 – 3 of different value of s

7 Differential Box Counting (DBC) : Step 4 Step 4 : Fractal dimension estimation The fractal dimension of image I can be estimate from the least square linear fit of log(N s ) against log(1/s).

8 Problem on DBC Method First, the problem occurs on the height of boxes is larger value when s is increased, the different of box number of the maximum and minimum are small which cause the precision of counting the box numbers. The second problem occur when assigns column of box, the DBC method cannot cover the minimum and maximum gray levels in the blocks when distance between minimum and maximum less than s. The third problem occurs on the size of grid is height, the range between the maximum and minimum are height which cause the box number are height respectively that effect on complex object.

9 Problem on DBC Method ( ภาษาไทย ) ปัญหาข้อแรกคือ ถ้าขนาดของบล็อกมีขนาดใหญ่ จะ ทำให้ความสูงของบล็อก (Box Height) มีค่าสูงด้วย ทำให้เมื่อคำนวณด้วยสูตร Nr = l – k +1 แล้วได้ค่าที่ ไม่ละเอียดพอที่จะประมาณค่าของ FD ได้ ปัญหาที่สองคือ ถ้าค่าของค่าระดับเทา Maximum และ Minimum มีค่าต่างกันน้อยกว่าความสูงของบล็อก (Box Height) จะทำให้ค่า Maximum และ Minimum อยู่คนละบล็อก Number ทั้งๆ ที่น่าจะอยู่ในบล็อก Number เดียวกัน จะมีผลทำ ให้เกิดความคาด เคลื่อนในการประมาณการค่าของ Box Count ปัญหาที่สาม คือ ในการแบ่งตารางกริดเป็น สี่เหลี่ยมนั้น จะทำให้ค่าความแตกต่างระหว่างค่า Maximum และ Minimum มีโอกาสที่ค่าความ แตกต่างระหว่าง Maximum และ Minimum แตกต่างกันมาก

10 Example 1 : DBC method แบ่งตารางกริดเป็นขนาด s=4x4 และ แบ่งตามแนวสูง s จะได้ขนาดบล็อก 4x4x4 และทำการนับจำนวนของบล็อก ที่มีค่าสูงสุดและค่าต่ำสุดของสีระดับ เทาอยู่ที่บล็อก แทนด้วย l และ k ตามลำดับ จากตัวอย่างบล็อกที่มีค่าสูงสุดคือ Box 12 l = 12 บล็อกที่มีค่าระดับเทาต่ำที่สุดคือ Box 7 k = 7 จะได้ค่า N(s) = = 6 บันทึกค่าของ s และ N(s) และทำการหาค่า N(s) ในทุกจุดภาพขนาด 4x4x4 และหาผลรวมของ N(s) และ ทำการบันทึกค่าของ N(s) และ s ดังนี้ sN(s) Box1 Box7 Box12 Max Gray : 60 Min Gray : 27

11 Example 1 : DBC method ลดขนาดตารางกริดลงเหลือ s=2x2 และแบ่งตาม แนวสูง s จะได้ขนาดบล็อก 2x2x2 และทำการนับ จำนวนของบล็อกที่มีค่าสูงสุดและค่าต่ำสุดของสี ระดับเทา จากตัวอย่างบล็อกที่มีค่าสูงสุดคือ Box 30 l = 30 บล็อกที่มีค่าระดับเทาต่ำที่สุดคือ Box 29 k = 29 จะได้ค่า N(s) = = 2 บันทึกค่าของ s และ N(s) จะได้ Box1 Box29 Box30 sN(s)

12 Example 1 : DBC method SBox Count (N(s)) Log(1/s)Log(N(s)) จากนั้นนำค่าที่ได้มาคำนวณหาค่า Log(1/s) และ Log(N(s)) จะได้ข้อมูลดังนี้

13 An Improved DBC (Paper2)

14

15 Modification C : To solve the problem on image intensity partition. To ensure the image intensity is covered. The following two partition scheme Partition an image with size MxM into sxs pixels. And the blocks overlap at the boundary by one row or one column. For example image size of 16x13 pixels partitioned into 20 blocks and any adjacent shared boundary blocks overlap by 4 pixels

16 Problems on An Improved DBC (Paper2) The problems on an improved DBC method is the computation of adjacent blocks that share common borders. The common borders must be calculated twice which cause the estimation error and more computations. They used the square of blocks to calculate of FD, the range of maximum and minimum gray level are height that effect that less accuracy on complex object is not consider

17 An Improved DBC with adaptable box height (Paper3) A box counting method with adaptable box height [6] used the ratio based box counting method to measureing the fractal dimension of images is not square size by given an image I of MxN pixels. They used ratio r, (r≥2, r Z + ), and calculated a grid blocks size m x n where m = M/r, n = N/r. The new blocks size m x n are four case In case of M = mr and N = nr. The image is evenly partitioned into rxr blocks of size mxn pixels. Otherwise they use the ratio r to calculate of rxr blocks of size mxn pixels and calculate the new blocks size on the rest of pixels in a column and row and used the new block size of the rest to calculate the box count.

18 Problems On This Method They have the same problem on the third method from DBC that is problem occurs on the size of grid is height, the range between the maximum and minimum are height which cause the box number are height respectively that effect on complex object.

19 Proposed Method In this section, we propose an improved triangle box counting method to increase the precision of differential box counting and reduce the gap between maximum and minimum gray levels. Considers the intensity of gray levels in partitioned image I of size 4x4 pixels in Fig 1. Maximum Gray Level Minimum Gray Level

20 Proposed Method The maximum and minimum of gray level fall into top and bottom of block respectively. If calculating with square blocks the maximum is 199 and minimum is 33, if box height is 3 the box number of maximum gray level in a grid is 199/3 = 67 and the box number of minimum gray level is 33/3 = 11 which there calculation of box count using equation (2) which cause the different of maximum and minimum is equal 57. In this proposed method is to reduce the range of maximum and minimum of gray level on each grid blocks by divided the square partitioned image into two triangle boxes which is improves the accuracy of fractal dimension estimation.

21 Proposed Method The most frequently uses increasing grid size form of 2 n where n is 1,2,3,..... Grid size 3x3, 5x5 … doesn’t considers on the step of computation and if grid size not form of 2 n which cause the borders of image must be padding before counting box numbers cause the estimation error. We used ratio s, (s≥2, s I + ) which describes on section II and calculated a grid blocks size w x h where w = W/s, h = H/s. The algorithm is proposed as follows

22 Proposed Method : Step 1 Partitioned image I into grid blocks in four situations following as S1 : If W = ws and H = hs. The image is evenly partitioned into sxs blocks of size mxn pixels. S2 : If W = ms and H > hs. The image is partitioned into s x s blocks of size wxh pixels and s x 1 blocks of size w x (H–hs) pixels. S3 : If W > ws and H = hs. The image is partitioned into s x s blocks of w x h pixels and 1 x s blocks of size (W – ws) x h pixels. S4 : If W > wr and H > hr. The image is partitioned into s x s blocks of size w x h pixels, s x 1 blocks of size w x (H – hr) pixels, 1 x s blocks of size (W – ws) x h pixels and 1 block of size (W – ws) x (H – hs).

23 Proposed Method : Step 2 Step 2 : Split the partitioned image I on step 1 into grid size w x h, w x (H - hs), (W - ws) x h, w x (H - hs)or (W - ws) x (H – hs),respectively into two triangle boxes as illustration in Fig 2. Pattern1 Pattern2 Fig 2. Illustration the image partitioning pattern.

24 Proposed Method : Step 2 There are two case of divided the partitioning into triangle boxes, case of asymmetric and symmetric block. we try to divided it into equally triangle boxes that would be possible. The example of split the partitioned image into triangle boxes into two case which describes follow as,

25 An Improved Adaptive DBC : Step 1 เปลี่ยนวิธีการคำนวณหาค่า box จาก Square เป็นแบบ Ratio ดังนี้ ขนาดของรูปภาพ MxN ใช้ค่าของ r เป็น ค่าที่ใช้ในการคำนวณหาค่า m = M/r, n = N/r แบ่งตารางกริดตามรูปแบบ 4 รูปแบบนี้ ถ้า M = mr และ N = nr จะแบ่งตารางบล็อก ได้จำนวน rxr บล็อกที่มีขนาด mxn ถ้า M = mr และ N > nr จะแบ่งตารางบล็อก ได้จำนวน r x (r+1) ซึ่งจะมีบล็อกจำนวน rxr บล็อกที่มีขนาด mxn และ rx1 บล็อก ที่มี ขนาด mx(N-mr)

26 An Improved Adaptive DBC : Step 1 ถ้า M > mr และ N = nr จะแบ่งตารางบล็อก ได้จำนวน rxr บล็อกที่มีขนาด mxn ถ้า M = mr และ N > nr จะแบ่งตารางบล็อก ได้จำนวน (r+1) x r ซึ่งจะมีบล็อกจำนวน rxr บล็อกที่มีขนาด mxn และ rx1 บล็อก ที่มีขนาด (M – mr) x n ถ้า M>mr และ N>nr จะแบ่งตารางบล็อกได้ จำนวน (r+1) x (r+1) บล็อก ซึ่งจะมีขนาด mxn จำนวน rxr บล็อก และขนาด mx(N-nr) จำนวน rx1 บล็อก และมีขนาด (M-mr)xn จำนวน 1xr บล็อก และมีขนาด (M-mr) x (N- nr) จำนวน 1 บล็อก

27 An Improved Adaptive DBC : Step 1 Figure (2) ใน paper

28 An Improved Adaptive DBC : Step 2 แบ่งตารางกริดในแต่ละบล็อกออกเป็นรูป สามเหลี่ยมตาม Pattern1 และ Pattern2 ดังนี้ Pattern1 Figure (3) รูปตัวอย่างการ Partition

29 An Improved Adaptive DBC : Step 2 Pattern2 Figure (3) รูปตัวอย่างการ Partition

30 An Improved DBC : Step 2 หาค่าสูงสุดของสีระดับเทาและค่าต่ำสุด ของสีระดับเทาในแต่ละบล็อกสามเหลี่ยม และหาค่าของ Box Number ของ ค่าสูงสุดและต่ำสุด MinTDBC1= 63 MaxTDBC1= 219 MinTDBC2= 74 MaxTDBC2= 214

31 An Improved DBC : Step 2 หาค่า Box Number ของ Min และ Max แทนด้วย k และ l ตามลำดับ จากนั้นคำนวณหาค่า Nr ในแต่ละบล็อก สามเหลี่ยมตามสมการต่อไปนี้ NrC1Upper = lc1Upper – kc1Lower + 1 NrC1Lower = lc1Upper – kc1Lower + 1 NrC1 = NrC1Upper + NrC1Lower MinTDBC1= 63 MaxTDBC1= 219 MinTDBC2= 74 MaxTDBC2= 214

32 An Improved DBC : Step 3 หาค่าสูงสุดของสีระดับเทาและค่าต่ำสุด ของสีระดับเทาในแต่ละบล็อกสามเหลี่ยม และหาค่าของ Box Number ของ ค่าสูงสุดและต่ำสุด MinTDBC1= 63 MaxTDBC1= 219 MinTDBC1= 74 MaxTDBC1= 214

33 An Improved DBC : Step 3 หาค่า Box Number ของ Min และ Max แทนด้วย k และ l ตามลำดับ จากนั้นคำนวณหาค่า Nr ในแต่ละบล็อก สามเหลี่ยมตามสมการต่อไปนี้ NrC2Upper = lc2Upper – kc2Lower + 1 NrC2Lower = lc2Upper – kc2Lower + 1 NrC2 = NrC2Upper + NrC2Lower MinTDBC1= 63 MaxTDBC1= 219 MinTDBC2= 74 MaxTDBC2= 214

34 An Improved DBC : Step 4

35 Experiments (An Improved DBC) จากผลการทดลอง An Improved Triangle Box Counting Method จะใช้รูปทดสอบ Brodatz ได้ผลลัพธ์ดังนี้ ภาพ ทดส อบ DBCFitting Error Improv ed DBC Fitting Error Improved DBC with Ratio Fitting Error D D D D

36 Experiments (An Improved DBC) จากผลการทดลอง An Improved Triangle Box Counting Method จะใช้รูปทดสอบ Brodatz ได้ผลลัพธ์ดังนี้ ภาพ ทดส อบ DBCFitting Error Improv ed DBC Fitting Error Improved DBC with Ratio Fitting Error D D D D

37 Experiments (An Improved DBC) จากผลการทดลอง An Improved Triangle Box Counting Method จะใช้รูปทดสอบ Brodatz ได้ผลลัพธ์ดังนี้ ภาพ ทดส อบ DBCFitting Error Improv ed DBC Fitting Error Improved DBC with Ratio Fitting Error D D D D

38 Conclusion ประเด็นในการพิจารณา วิธีการ TDBC นั้นมีการ Improve จาก Paper1 แต่ไม่สามารถ Improved จาก Paper2 วิธีการ TDBC With Ratio สามารถ Improve ได้จาก Paper1 และ Paper2 ได้

39 Conclusion วิธีการคำนวณค่า Fitting Error ของ Original DBC จะใช้สมการต่อไปนี้ โดยที่ x = log(1/r) และ y = log(Nr) ส่วนใน Paper ที่ Improved จะใช้สมการ ต่อไปนี้ โดยที่ x = log(r) และ y = log(Nr)

40 Conclusion

41 ใน Paper3 ใช้การเปรียบเทียบโดยดูจาก ส่วนเบี่ยงเบนเฉลี่ยยกกำลังสอง ในการ Implement ของผมใช้การ เปรียบเทียบโดยใช้ Fitting Error


ดาวน์โหลด ppt An Improved Triangle Box Counting Method for Fractal Dimension Estimation Hemmarat Wachirahatthapong.

งานนำเสนอที่คล้ายกัน


Ads by Google