งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ

งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ

ความหมาย เซต การเขียน เซต ลักษณะ ของเซต. เซต หมายถึง กลุ่มของสิ่งของ ( รูปหรือนาม ) ที่ต่างกันซึ่ง จะต้องกำหนดชัดเจน (well-defined) เพื่อให้ตัดสินได้ว่าสิ่งใดสิ่งหนึ่งเป็นสมาชิก.

งานนำเสนอที่คล้ายกัน


งานนำเสนอเรื่อง: "ความหมาย เซต การเขียน เซต ลักษณะ ของเซต. เซต หมายถึง กลุ่มของสิ่งของ ( รูปหรือนาม ) ที่ต่างกันซึ่ง จะต้องกำหนดชัดเจน (well-defined) เพื่อให้ตัดสินได้ว่าสิ่งใดสิ่งหนึ่งเป็นสมาชิก."— ใบสำเนางานนำเสนอ:

1 ความหมาย เซต การเขียน เซต ลักษณะ ของเซต

2 เซต หมายถึง กลุ่มของสิ่งของ ( รูปหรือนาม ) ที่ต่างกันซึ่ง จะต้องกำหนดชัดเจน (well-defined) เพื่อให้ตัดสินได้ว่าสิ่งใดสิ่งหนึ่งเป็นสมาชิก ของเซตที่กำลังพิจารณาหรือไม่  สัญลักษณ์ a  S อ่านว่า a เป็นสมาชิกของเซต S  a  S อ่านว่า a ไม่เป็นสมาชิกของเซต S  ปกติจะใช้ตัวอักษรภาษาอังกฤษตัวใหญ่แทนเซต  และอักษรตัวเล็กแทนสมาชิกของเซ็ต เซต ครูนิชาภัทร ศรีจันทร์..MathBRR.

3  1) วิธีแจกแจงสมาชิก (Tubular form) มีหลักการเขียน ดังนี้ - เขียนสมาชิกทั้งหมดในวงเล็บปีกกา - สมาชิกแต่ละตัวคั่นด้วยเครื่องหมายจุลภาค (,) - สมาชิกที่ซ้ำกันให้เขียนเพียงตัวเดียว ในกรณีที่จำนวนสมาชิกมาก ๆ ให้เขียนสมาชิกอย่างน้อย 3 ตัวแรก แล้วใช้จุด 3 จุด (Tripple dot) แล้วจึงเขียน สมาชิกตัวสุดท้าย เช่น S={1, 2, 3, 4, 5, 6, 7, 8, 9, 10} การเขียนเซต ครูนิชาภัทร ศรีจันทร์..MathBRR.

4 2) วิธีบอกเงื่อนไขของสมาชิก (Set builder form) หลักการ เขียนมีดังนี้ เขียนเซตด้วยวงเล็บปีกกา กำหนดตัวแปรแทนสมาชิกทั้งหมดตามด้วยเครื่องหมาย | (| อ่านว่า " โดยที ") ่ แล้วตามด้วยเงื่อนไขของตัวแปรนั้น ดัง รูปแบบ {x | เงื่อนไขของ x แบบใช้เงื่อนไข (Predicate form) เขียนในรูป  S = { x / P(x) } อ่านว่า S คือเซตของทุก x ที่มี คุณสมบัติ P  S = { x / x เป็นจำนวนเต็มบวก 10 ตัวแรก } ครูนิชาภัทร ศรีจันทร์..MathBRR.

5 1. ให้ V แทนเซตของสระในภาษาอังกฤษ V = {a, e, I, o, u} 2. ให้ O แทนเซตของเลขจำนวนเต็มบวกคี่ที่มีค่าน้อยกว่า 10 จะเขียนแทนด้วย  O = {1, 3, 5, 7, 9}  ข้อตกลง ต่อไปจะเขียนสัญลักษณ์แทนเซตที่ใช้บ่อยดังนี้   = เซตว่าง  R = เซตของจำนวนจริง  N = เซตของจำนวนเต็มธรรมชาติ  I = เซตของจำนวนเต็ม ตัวอย่าง ครูนิชาภัทร ศรีจันทร์..MathBRR.

6 เซตว่าง (Empty Set) คือ เซตที่ไม่มีสมาชิกเลย เขียนแทนด้วย { } หรือ (phi) เช่น  เซตของจำนวนเต็มที่อยู่ระหว่าง 1 กัน 2  เซตของสระในคำว่า " อรวรรณ " เซตจำกัด (Finite Set) คือ เซตที่มีจำนวนสมาชิกเท่ากับจำนวนเต็มบวก หรือ ศูนย์ เช่น มีจำนวนสมาชิกเป็น 0  {1, 2, 3,...,100} มีจำนวนสมาชิกเป็น 100 เซตอนันต์ (Infinite Set) คือ เซตที่ไม่ใช่เซตจำกัด ไม่ สามารถบอกจำนวนสมาชิกได้ เช่น  เซตของจำนวนเต็มบวก {1, 2, 3,...}  เซตของจุดบนระนาบ ลักษณะของเซต ครูนิชาภัทร ศรีจันทร์..MathBRR.

7 นิยาม ให้ A และ B เป็นเซตใด ๆ เรากล่าวว่า เซต A เท่ากับ เซต B เขียนแทนด้วย A = B ก็ต่อเมื่อ สมาชิกของเซต A และ B เหมือนกันทุกตัว ตัวอย่าง X = { 1,3,5,6 } Y = { 6, 3, 1, 5, 6 } จะได้ว่า X = Y การเท่ากันของเซต ครูนิชาภัทร ศรีจันทร์..MathBRR.

8 A = {1, 2, 3, 4, 5}B = {1, 2, 3, 4, 3, 2, 5, 5, 5} เซต A มีสมาชิกเหมือนกับ เซต B A = B C = {a, e, i, o, u}D = {i, o, u, e, o} เซต C มีสมาชิกเหมือนกับ เซต D C = D E = {0, 1, 3, 5} F = {x | x เป็นจำนวนเต็ม บวกน้อยกว่า 6} เซต E มีสมาชิก 4 ตัว คือ 0, 1, 3, 5 แต่เซต F มีสมาชิก 5 ตัว คือ 1, 2, 3, 4, 5 E  F ตัวอย่าง ครูนิชาภัทร ศรีจันทร์..MathBRR.

9 เซตที่เทียบเท่ากัน (Equivalentl Sets) คือ เซตที่มีจำนวนสมาชิกเท่ากัน และสมาชิกของเซตจับคู่ กันได้พอดีแบบหนึ่งต่อหนึ่ง สัญลักษณ์ เซต A เทียบเท่ากับ เซต B แทนด้วย A B เซตที่เทียบเท่ากัน C = {x | x I+} D = {x | x = 2n, n = 1, 2, 3,...} C เป็นเซตจำนวนเต็มบวก {1, 2, 3,...} ส่วนเซต D เป็นเซตของจำนวนคู่ ตั้งแต่ 2 ขึ้นไป {2, 4, 6,...} โดยสมาชิกของเซต C กับ D จับคู่ แบบ 1:1 ได้พอดี A = {a, b, c, d, e} B = {1, 2, 3, 4, 5} A =B แต่เซตทั้งสองมีจำนวน สมาชิกเท่ากัน และสามารถจับคู่ แบบ 1:1 ได้พอดี ครูนิชาภัทร ศรีจันทร์..MathBRR.

10 หมายเหตุ 1. ถ้า A = B แล้ว A B 2. ถ้า A B แล้ว ไม่อาจสรุปได้ว่า A = B ครูนิชาภัทร ศรีจันทร์..MathBRR.

11   ที่มา : ทวี บุญช่วย, วารสารไฮเอ็ด ม. ปลาย ( วิทย์ ), ปีที่ 1 ฉ. 1 พฤษภาคม 2539


ดาวน์โหลด ppt ความหมาย เซต การเขียน เซต ลักษณะ ของเซต. เซต หมายถึง กลุ่มของสิ่งของ ( รูปหรือนาม ) ที่ต่างกันซึ่ง จะต้องกำหนดชัดเจน (well-defined) เพื่อให้ตัดสินได้ว่าสิ่งใดสิ่งหนึ่งเป็นสมาชิก.

งานนำเสนอที่คล้ายกัน


Ads by Google