งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ

งานนำเสนอกำลังจะดาวน์โหลด โปรดรอ

นโยบายการคลังกับการขยายตัวเศรษฐกิจ: การสะสมทุน (Capital Accumulation)

งานนำเสนอที่คล้ายกัน


งานนำเสนอเรื่อง: "นโยบายการคลังกับการขยายตัวเศรษฐกิจ: การสะสมทุน (Capital Accumulation)"— ใบสำเนางานนำเสนอ:

1 นโยบายการคลังกับการขยายตัวเศรษฐกิจ: การสะสมทุน (Capital Accumulation)
This lecture drawn heavily from Mankiw, Macroeconomics, 5th edition, 2003

2 เสถียรภาพกับการขยายตัวเศรษฐกิจ
นโยบายการคลังเพื่อการรักษาเสถียรภาพมักหมายถึงการลดการขาดดุลการคลังซึ่งการบริหารนโยบายดังกล่าวมักต้องมีต้นทุนในรูปของโอกาสการขยายตัวในระยะยาว (เพราะต้องเสียทรัพยากรในการรักษาเสถียรภาพของระบบเศรษฐกิจ เช่นการลดการใช้จ่ายเป็นต้น) ดังนั้นในการออกแบบนโยบายการรักษาเสถียรภาพจึงต้องคำนึงถึงการขยายตัวของเศรษฐกิจด้วย ตัวอย่าง: public capital declined suggest lower of economic investment. การรักษาเสถียรภาพกับการขยายตัวเศรษฐกิจต้องการการจัดการด้านอุปสงค์ที่มุ่งเพื่อส่งเสริมการเพิ่มของStabilization and growth requires that demand management policies be complemented by policies aimed at increasing potential output.

3 เสถียรภาพกับการขยายตัวเศรษฐกิจ
นโยบายการคลังเพื่อการขยายตัวเศรษฐกิจและการพัฒนาต้องคำนึงถึงความสำคัญขององค์ประกอบและประสิทธิภาพ ของมาตรการโดยเฉพาะด้านการใช้จ่าย รวมทั้งบทบาทของนโยบายที่มาจากทางด้านอุปทานด้วย (supply side)

4 รายได้กับความยากจน ตัวอย่างประเทศต่างๆ ปี 2000
source: The Elusive Quest for Growth, by William Easterly. (MIT Press, 2001)

5 ทำไมการขยายตัวเศรษฐกิจจึงมีความสำคัญ
ปัจจัยที่มีผลต่อการขยายตัวเศรษฐกิจในระยะยาวแม้จะเป็นเพียงเล็กน้อยจะส่งผลต่อคุณภาพชีวิตในระยะยาว % การเพิ่มขึ้นของดัชนีมาตรฐานคุณภาพชีวิต อัตราการขยายตัวเศรษฐกิจต่อหัวประชากร 25 ปี 50 ปี 100 ปี 2.0% 64.0% 169.2% 624.5% 2.5% 85.4% 243.7% 1,081.4%

6 ที่มาของการขยายตัวเศรษฐกิจ
ผลิตภัณฑ์ภาคการผลิต (Productivity) ปัจจัยการผลิต (Factors of Production)

7 ผลิตภัณฑ์ภาคการผลิต PRODUCTIVITY: บทบาทและการกำหนดขนาด
ผลิตภัณฑ์ภาคการผลิตมีบทบาทสำคัญในการกำหนดคุณภาพชีวิตของประชาชนในทุกๆ ประเทศ ตัวอย่าง เวลาที่ใช้ในการทำงานที่ลดลง การดำรงชีวิตที่ดีขึ้น เป็นต้น

8 ทำไมผลิตภัณฑ์ภาคการผลิตจึงมีความสำคัญ
ผลิตภัณฑ์ภาคการผลิต Productivity หมายถึงจำนวนสินค้าและบริการที่แรงงานสามารถผลิตได้ในแต่ละช่วงเวลา (ชั่วโมง)

9 Why Productivity Is So Important
To understand the large differences in living standards across countries, we must focus on the production of goods and services.

10 การจำแนกและกำหนดผลิตภัณฑ์การผลิต
The inputs used to produce goods and services are called the factors of production. The factors of production directly determine productivity.

11 ผลิตภัณฑ์ภาคการผลิต The Factors of Production Physical capital
Human capital Natural resources Technological knowledge

12 ผลิตภัณฑ์ภาคการผลิต Physical Capital
is a produced factor of production. It is an input into the production process that in the past was an output from the production process. is the stock of equipment and structures that are used to produce goods and services. Tools used to build or repair automobiles. Tools used to build furniture. Office buildings, schools, etc.

13 ผลิตภัณฑ์ภาคการผลิต Human Capital
the economist’s term for the knowledge and skills that workers acquire through education, training, and experience Like physical capital, human capital raises a nation’s ability to produce goods and services.

14 ผลิตภัณฑ์ภาคการผลิต Natural Resources
inputs used in production that are provided by nature, such as land, rivers, and mineral deposits. Renewable resources include trees and forests. Nonrenewable resources include petroleum and coal. can be important but are not necessary for an economy to be highly productive in producing goods and services.

15 ผลิตภัณฑ์ภาคการผลิต Technological Knowledge
society’s understanding of the best ways to produce goods and services. Human capital refers to the resources expended transmitting this understanding to the labor force.

16 FYI: The Production Function
Economists often use a production function to describe the relationship between the quantity of inputs used in production and the quantity of output from production.

17 FYI: The Production Function
Y = A F(L, K, H, N) Y = quantity of output A = available production technology L = quantity of labor K = quantity of physical capital H = quantity of human capital N = quantity of natural resources F( ) is a function that shows how the inputs are combined.

18 FYI: The Production Function
A production function has constant returns to scale if, for any positive number x, xY = A F(xL, xK, xH, xN) That is, a doubling of all inputs causes the amount of output to double as well.

19 FYI: The Production Function
Production functions with constant returns to scale have an interesting implication. Setting x = 1/L, Y/ L = A F(1, K/ L, H/ L, N/ L) Where: Y/L = output per worker K/L = physical capital per worker H/L = human capital per worker N/L = natural resources per worker

20 FYI: The Production Function
The preceding equation says that productivity (Y/L) depends on physical capital per worker (K/L), human capital per worker (H/L), and natural resources per worker (N/L), as well as the state of technology, (A).

21 The production function
In aggregate terms: Y = F (K, L) Define: y = Y/L = output per worker k = K/L = capital per worker Assume constant returns to scale: zY = F (zK, zL ) for any z > 0 Pick z = 1/L. Then Y/L = F (K/L, 1) y = F (k, 1) y = f(k) where f(k) = F(k, 1)

22 The production function
Output per worker, y Capital per worker, k f(k) 1 MPK = f(k +1) – f(k) Note: this production function exhibits diminishing MPK.

23 The national income identity
Y = C + I (remember, no G ) In “per worker” terms: y = c + i where c = C/L and i = I /L

24 The consumption function
s = the saving rate, the fraction of income that is saved (s is an exogenous parameter) Note: s is the only lowercase variable that is not equal to its uppercase version divided by L Consumption function: c = (1–s)y (per worker)

25 Saving and investment saving (per worker) = y – c = y – (1–s)y = sy
National income identity is y = c + i Rearrange to get: i = y – c = sy (investment = saving) Using the results above, i = sy = sf(k)

26 Output, consumption, and investment
Output per worker, y Capital per worker, k f(k) y1 k1 c1 sf(k) i1

27 Depreciation  = the rate of depreciation
= the fraction of the capital stock that wears out each period Depreciation per worker, k Capital per worker, k k 1

28 Capital accumulation k = s f(k) – k
The basic idea: Investment increases the capital stock, depreciation reduces it. Change in capital stock = investment – depreciation k = i – k Since i = sf(k) , this becomes: k = s f(k) – k

29 The equation of motion for k
k = s f(k) – k The Solow model’s central equation Determines behavior of capital over time… …which, in turn, determines behavior of all of the other endogenous variables because they all depend on k. E.g., income per person: y = f(k) consumption per person: c = (1–s) f(k)

30 การขยายตัวเศรษฐกิจกับนโยบายรัฐ ECONOMIC GROWTH AND PUBLIC POLICY
รัฐบาลสามารถออกแบบนโยบายที่จะเป็นการเพิ่มผลิตภาพ (productivity) และคุณภาพชีวิต (living standards) ของประชาชนได้อยู่ตลอดเวลา

31 การขยายตัวเศรษฐกิจกับนโยบายรัฐ
Government Policies That Raise Productivity and Living Standards Encourage saving and investment. Encourage investment from abroad Encourage education and training. Establish secure property rights and maintain political stability. Promote free trade. Promote research and development.

32 The steady state k = s f(k) – k
If investment is just enough to cover depreciation [sf(k) = k ], then capital per worker will remain constant: k = 0. This occurs at one value of k, denoted k*, called the steady state capital stock.

33 An increase in the saving rate
An increase in the saving rate raises investment… …causing k to grow toward a new steady state: Investment and depreciation k k s2 f(k) s1 f(k)

34 Prediction: Higher s  higher k*.
And since y = f(k) , higher k*  higher y* . Thus, the Solow model predicts that countries with higher rates of saving and investment will have higher levels of capital and income per worker in the long run.

35 International evidence on investment rates and income per person
100,000 Income per person in 2000 (log scale) 10,000 1,000 Figure 7-6, p Source: Penn World Table version 6.1. 100 5 10 15 20 25 30 35 Investment as percentage of output

36 The Golden Rule: Introduction
Different values of s lead to different steady states. How do we know which is the “best” steady state? The “best” steady state has the highest possible consumption per person: c* = (1–s) f(k*). An increase in s leads to higher k* and y*, which raises c* reduces consumption’s share of income (1–s), which lowers c*. So, how do we find the s and k* that maximize c*?

37 The Golden Rule capital stock
the Golden Rule level of capital, the steady state value of k that maximizes consumption. To find it, first express c* in terms of k*: c* = y*  i* = f (k*)  i* = f (k*)  k* In the steady state: i* = k* because k = 0.

38 The Golden Rule capital stock
steady state output and depreciation steady-state capital per worker, k*  k* Then, graph f(k*) and k*, look for the point where the gap between them is biggest. f(k*)

39 The Golden Rule capital stock
c* = f(k*)  k* is biggest where the slope of the production function equals the slope of the depreciation line:  k* f(k*) MPK =  steady-state capital per worker, k*

40 The transition to the Golden Rule steady state
The economy does NOT have a tendency to move toward the Golden Rule steady state. Achieving the Golden Rule requires that policymakers adjust s. This adjustment leads to a new steady state with higher consumption. But what happens to consumption during the transition to the Golden Rule?

41 Starting with too much capital
then increasing c* requires a fall in s. In the transition to the Golden Rule, consumption is higher at all points in time. time y c i t0

42 Starting with too little capital
then increasing c* requires an increase in s. Future generations enjoy higher consumption, but the current one experiences an initial drop in consumption. y c i t0 time

43 Population growth Assume that the population (and labor force) grow at rate n. (n is exogenous.) EX: Suppose L = 1,000 in year 1 and the population is growing at 2% per year (n = 0.02). Then L = n L = 0.02  1,000 = 20, so L = 1,020 in year 2.

44 Break-even investment
( + n)k = break-even investment, the amount of investment necessary to keep k constant. Break-even investment includes:  k to replace capital as it wears out n k to equip new workers with capital (Otherwise, k would fall as the existing capital stock would be spread more thinly over a larger population of workers.)

45 The equation of motion for k
With population growth, the equation of motion for k is k = s f(k)  ( + n) k actual investment break-even investment

46 The Solow model diagram
k = s f(k)  ( +n)k Investment, break-even investment Capital per worker, k ( + n ) k sf(k) k*

47 The impact of population growth
Investment, break-even investment ( +n2) k ( +n1) k An increase in n causes an increase in break-even investment, sf(k) k2* leading to a lower steady-state level of k. k1* Capital per worker, k

48 Prediction: Higher n  lower k*.
And since y = f(k) , lower k*  lower y*. Thus, the Solow model predicts that countries with higher population growth rates will have lower levels of capital and income per worker in the long run.

49 International evidence on population growth and income per person
100,000 per Person in 2000 (log scale) 10,000 1,000 Figure 7-13, p Number of countries = 96. Source: Penn World Table version 6.1. 100 1 2 3 4 5 Population Growth

50 The Golden Rule with population growth
To find the Golden Rule capital stock, express c* in terms of k*: c* = y*  i* = f (k* )  ( + n) k* c* is maximized when MPK =  + n or equivalently, MPK   = n In the Golden Rule steady state, the marginal product of capital net of depreciation equals the population growth rate.

51 Supply-side Effects of Fiscal Policy

52 Supply-side Effects of Fiscal Policy
From a supply-side viewpoint, the marginal tax rate is of crucial importance: A reduction in marginal tax rates increases the reward derived from added work, investment, saving, and other activities that become less heavily taxed. High marginal tax rates will tend to retard total output because they will: discourage work effort and reduce the productive efficiency of labor, adversely affect the rate of capital formation and the efficiency of its use, and, encourage individuals to substitute less desired tax-deductible goods for more desired non-deductible goods.

53 Supply-side Effects of Fiscal Policy
So, changes in marginal tax rates, particularly high marginal rates, may exert an impact on aggregate supply because the changes will influence the relative attractiveness of productive activity in comparison to leisure and tax avoidance. Impact of supply-side effects: Usually take place over a lengthy time period. There is some evidence that countries with high taxes grow more slowly—France and Germany versus United Kingdom. While the significance of supply-side effects are controversial, there is evidence they are important for taxpayers facing extremely high tax rates – say rates of 40 percent or above.

54 Goods & Services (real GDP)
Supply Side Economics and Tax Rates LRAS1 LRAS2 Price Level SRAS1 AD2 SRAS2 With time, lower tax rates promote more rapid growth (shifting LRAS and SRAS out to LRAS2 and SRAS2). E1 P0 E2 AD1 Goods & Services (real GDP) YF1 YF2 What are the supply-side effects of a cut in marginal tax rates? Lower marginal tax rates increase the incentive to earn and use resources efficiently. AD1 shifts out to AD2, and SRAS & LRAS shift to the right. If the tax cuts are financed by budget deficits, AD may expand by more than supply, bringing an increase in the price level.

55 Share of Taxes Paid By the Rich
Share of personal income taxes paid by top ½ % of earners 1997 Capital gains tax rate cut 30 % Top rate raised from 30% to 39% 28 % 26 % 1986 Top rate cut from 50% to 30% 24 % Top rate cut from 91% to 70% 22 % 20 % 18 % 1981 Top rate cut from 70% to 50% 16 % 14 % 1960 1965 1970 1975 1980 1985 1990 1995 2000 The share of personal income taxes paid by the top one-half percent of earners is shown here. During the last four decades, the share of taxes paid by these earners has increased as the top tax rates have declined. This indicates that the supply side effects are strong for these taxpayers.

56 Have Supply-siders Found a Way to Soak the Rich?
Since 1986 the top marginal personal income tax rate in the United States has been less than 40% compared to 70% or more prior to that time. Nonetheless, the top one-half percent of earners have paid more than 25% of the personal income tax every year since 1997. This is well above the 14% to 19% collected from these taxpayers in the 1960s and 1970s when much higher marginal personal income tax rates were imposed on the rich.


ดาวน์โหลด ppt นโยบายการคลังกับการขยายตัวเศรษฐกิจ: การสะสมทุน (Capital Accumulation)

งานนำเสนอที่คล้ายกัน


Ads by Google